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PREFACE.

TrE work now republished * is of that
small number which mark an epoch in
the history of science. In this short -
treatise is found the germ of the true
theory of so-called émaginary quanti-
ties. Although generally attributed to
the genius of Gauss, this theory was not
pointed out by that great geometer until
twenty-five years after the publication of
Argand’s work,t and it had been mean-
while re-discovered several times in both
France and England. On this point we
can cite no testimony more convincing
than that of a German geometer, whose
recent death is deplored by science.

Says Hankel,} “the first to show how to
represent the imaginary forms A + B/ by

points in a plane, and to give rules for

* 13t edition, Paris. Duminil-Lesueur, 1806,

+ Anzeige zur- *‘ Theoria residuorum biquadraticum
Commnentalio recunda,” 1831 (Gauss Werke, t. IT, p. 174).

3} Vorlesungen nbder die complexen Zaklen und ihve rnne-

tionem. (Leipzig, 1867, p. 8).
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their geometric addition and multiplica-
tion, was Argand, who established his
theory in a pamphlet printed in Paris, in
1806, under the title ¢ Hssai sur wune
maniére de representer les quantités im-
aginaires dans les constructions géomét-
riques.’ Yet this paper did not meet
with public recognition until after the
ingertion of & note by J. F. Francais, in
the Annales de Gergonne, Vol. IV, 1813,
1814, p. 61, in which, at the same time,
Argand* also published two articles.
In these articles the subject was so
exhaustively treated that nothing new
has since been found to add to them,
and, unless some older work is dis-
covered, Argand must be regarded as’
the true founder of the theory of com-
plex quantities in a plane.

“ . . . . In 1831, Gausst{ devel-
oped the same idea, as is well known;,
but, however great his merit, as bring~
ing this idea to the notice of science, it
is none the less impossible to claim for
him priority.”

*Vol. IV, p. 133, and Vol. V. p. 195.
+Works, Vol. 11, p. 174.
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From this accurate historical résumé,
it is seen that the work of Argand
remained almost wholly unknown, hav-
ing been distributed but to few persons,
and not put in general circulation.
Seven years later, Francais, an artillery
officer at Metz, sent to the Editor of the
Annales the outline of a theory whose .
germ he had found in a letter written to
his brother by Legendre, the latter hav-
ing obtained it from another ~author
whose name he did not give. This
article came to the notice of Argand,
who iminediately wrote Gergonne a note
in which he made himself known as the
author of the work cited in Legendre’s
letter, and in which he gave quite a
complete summary of his pamphlet of
1806. This double publication gave rise
to a discussion in the .Annales, in which
Francais, Gergonne and Servois took
part, closing with a remarkable article,
in which Argand explained more satis-
- factorily certain points in his theory,
especially his demonstration of the
fundamental proposition of the theory
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of algebraic equations, the simplest yet
given, which subsequently Cauchy only
reproduced, in a purely analytic, but less
striking, form. These various articles,
the natural sequel to Argand's pamphlet,
published in a Recweil now very rare,
are collected in an appendix to this
volume. Notwithstanding their appear-
ance in a scientific journal so well
known, the views of Argand were wholly
unnoticed, as appears from the fact that
twenty-two years after the publication of
the essay they were re-stated both by
Warren, in England, and Mourey, in
France, apparently without any knowl-
edge on their part of their earlier expo-
sition. Nor did they themselves succeed
in attracting the attention of geometers,
although the researches of Mourey were
given in the Lecons d’ Algébre by Leféb-
ure de Fourcy, and two articles, sup-
plementary to his first work, had been
published by Warren in the Philosophi-
cal Transactions. Only after Gauss had
spoken, were these views taken up in
Germany. They soon became familiar




vil

to English geometers, and were the
starting point of Hamilton's theory of
Quaternions, while, in Italy, Bellavitis
made them the basis of his Méthode des
Eqm:pqllences.* In France, Argand’s
theory was worked over, without material
addition, till its adoption by Cauchy,
who expounded it in his Fxercices
d’Analyse et de Physique mathémati-
que,t with a complete historical notice
rendering Argand full justice.

In the work of this modest savant of
Geneva is to be found the origin of
meny subsequent researches, some of
which have thrown unexpected light
both upon the mystery which has so
long enveloped negative and imaginary
quantities, as well as upon the general
theory of functions, by affording a defin-
ite geometrical interpretation. Others,
as yet of less importance, but perhaps
destined in the future to render great
services, have resulted in the creation of
TE:cTod_ttmvdeiia MeM?ciea Equjpbﬂ;nce;e 7;15.\%
Bellavitis. Traduit de I'Italien par C. A. Laisant. Paris.

Gauthier-Villars, 1874.
tVol. IV, p. 157,
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new methods in analytical geometry,
among which may be cited those of
Mbobius, Bellavitis, Hamilton and Grass-
man. Unable to aveid the constant
presence of negative and imaginary
quantities in the results of analysis, or
to surrender the important advantages
following the use of their corresponding
symbols, mathematicians had for a long
time been content to employ them with-
out fully accounting for their trme
nature, regarding them as signs of oper-
ations which in themselves had mo mean-
ing, yet which, under certain rules, led
surely and directly, though in an obscure
and mysterious manner, to results which
other quantities would not have yielded,
except indeed by long and difficult pro-
cesses, involving the discussion of an
indefinite number of particular cases.
It is at last seen, however, that the
impossibility of negative quantities is, in
general, only apparent, and results from.
& generalization of the idea of quantity
without any modification of the corre-
ponding analytical operations. An
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analogous case is found in the very ele-
ments of arithmetic, which, however, has
givén rise to no diffieculty. The opera-
tion of division cannot be exactly per-
formed if we are restricted to whole
numbers. But if unity be divided into
equal fractions, the division is always
possible, and the result becomes a
complex expression, consisting of two
numbers, one indicating multiplication,
the other division. Hence arises a new
class of quantities, fractions, subject to
operations to which are applied the same
names given to the operations on inte-
gers, which they include ae particular
cages. But the definitions of multipli-
cation and division have been therefore
carefully modified, to render them appli-
cable to the new quantities. By pro-
ceeding in an analogous manner in addi-
tion and subtraction, the meaning of a
negative quantity has been definitely
fixed. So long as the problem is re-
stricted to the simple determination of
magnitude, the subtraction «—b is im-
possible and absurd, if 4>a. But if,
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instead of a series of magnitudes, ex-
tending from zero in a single direction,
we are concerned with a series extending
indefinitely in two opposite directions,
and if we call addition an operation
which consists in starting from a certain
quantity in one of these two directions,
and subtraction an inverse operation,
consisting of motion in the opposite di-
rection, thus defined, both operations
‘will be always possible and their results
as real as those of a purely arithmetical
addition.

To represent these results in a simple
manner, we are led to write before the
symbol, representing any quantity, a sign
indicating the direction in which it is
estimated. Such is the true meaning of
negative quantities.

This extension of the meaning of quan-
tity and of the operations to which it is
subjected, may be carried still further.
Baut this further representation of quan-
tity makes the use of a geometrical no-
tation, which, within the limits of its
application, is the most luminous and
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complete of all, almost indispensable.
Suppose the quantity sought be subject
to two causes of variation, and to depend
upon two magnitudes which can be rep-
resented by any two co-ordinates fixing
the position of a point in-a plane. The
operation of extracting the square root,
for example, in the preceding case of a
single variable co-ordinate, was possible
only when the quantity so operated upon
was of the kind denoted by plus unity.
So long as 4/a corresponds to the con-
struction of a mean proportional be-
tween @ and +1,4/—%’ indicates an im-
possible operation, and no point of the
locus corresponding to a single variable
co-ordinate can represent this result.
But if both co-ordinates are made varia-
ole and the restriction to a single line
be abandoned, and the definition of the
extraction of the square root be modi-
fied, the case is otherwise. The quanti
ties considered do not then depend upon
a single magnitude, but on two, and are
for this reason called complex quantities.
In operating on such a quantity, both of
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the quantities on which it depends are
affected, exactly as in operating on a
fraction we affect its two terms. Thanks
to the introduction of both new quanti-
ties and new definitions of operations,
/=¥ no longer indicates an impossible
operation, and the term é#naginary is no
more applicable to such a result than to
fractions or negative quantities. Such
is the fundamental and immediate con-
sequence of Argand’s conception. Sym-
bols of the form a+#4/—1, to which all
analytical results have been reduced, are
no longer either impossible or incompre-
hensible; they are a system of two
numbers @ and b, which are combined
with each other just as are the co-ordi-
nates of a point in a plane. Thence-
forth, the brilliant results of the power-
ful analysis of Cauchy were to be
translated into a geometrical language
speaking to the eyes, and the discussion
of formule became a simple problem of
the Geometry of Position, subsequently
completely solved by Riemann. The
theory of complex quantities which, by




xiii

the discoveries of Cauchy, had become
the basig of the theory of functions, thus
received at the same time a8 new confirm-
ation, placing them beyond all the doubt
and objections to which they had been
before exposed. Such are the eminent
services rendered by the discovery of
Argand both to Analysis and the Philos-
ophy of Mathematics.

But geometry, as well as analysis,
though to a less degree, has profited by
the introduction of these conceptions,
founded on the discovery of a new bond
between these two branches of the sci-
ence. In Argand's work are found the
beginnings of a very general method of
plane analytical geometry, developed
later by M. Bellavitis with great suc-
cess, furnishing a uniform process for
the discussion both of problems in ele-
mentary geometry and the more ad-
vanced theory of curves. The advant-
age of this method consists in the
introduction into the calculations of the
points themselves instead of their co-
ordinates, and the consequent choice at
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the last moment of the most convenient
system of reference. Argand was less
successful in his attempts to extend his
method of representing points to space
of three dimensions. Indeed, this prob-
lem involved difficulties far greater than
those which he had just overcome, and
not till after thirty years did Hamilton
at last surmount them.

We should have taken great pleasure
in giving our readers some information
relative to the author himself of this im-
portant tract. With this in view, we
applied to M. R. Wolf, as more thor-
oughly acquainted with the history of
science in Switzerland than any one else,
and to whom we are indebted for a bio-
graphical collection, as remarkable forits
profound learning as for its attractive
style. M. Wolf at once kindly caused
inquiries to be made in Geneva, Argand'’s
native city. Unfortunately, the informa-
tion he obtained, through Prof. Alfred
Gautier, is contained in a few brief lines
here cited: “Ireadily found the registry
of birth, on July 221, 1768, of Jean-
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Robert Argand, son of Jacques Argand
and Eve Canac, very probably the author
of the mathematical paper in question.
Ilearn from one who knew his family
that hewas for a long time a book-keeper
at Paris, and I presume that he died
there. He was not a near relation of
Aimé Argand, * and pernaps not of the
same family. He had one son who also
resided in Paris.” M. Wolf subse-
quently learned that Argand also had a
daughter named Jeanne-Francoise-Dor-
othée-Marie-Elizabeth, married to Félix
Bousquet, with whom she went to Stutt-
gart, where he had obtained some unim-
portant situation. If we add to this
that, about 1813, Argand lived at Paris,
rue de Gentilly, No. 12, as indicated in
his own handwriting on the cover of the
copy sent to Gergonne, we shall have
stated all we have been able to learn of
this original man, whose modest life will
remain unknown, but whose services to

* A friend and assoclate of the brothers Montgol™
fier, who invented the lamp of that name. (1755-1808.)
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science Hamilton and Cauchy have
deemed worthy the gratitude of pos-
terity.

J. HOUEL.



IMAGINARY QUANTITIES :

THRIR

Geometrical Interpretation.*

1. Let @ be any arbitrary quantity. If
to this quantity another equal to it be
added, we may express the resulting sum
by 2a. If we repeat this operation, the
result will be 3¢, and so on. We thus
obtain the series a, 2a, 3a, 4a, . . . . .,
each term of which is derived from tlre
preceding by the same operation, capa-
ble of indefinite repetition. Let us con-
sider the series in reverse order, namely,
. . 4a, 3a, 2a, a. As before,
each term of this new series may be re-
garded as derived from the preceding by
an operation which is the reverse of the

* Essay on the GGeometrical Interpretation of Imag-
inary Quantities, by R. Argand. Second edition with
preface by M. .J. Holle!l, and extracts from the Annales
de Gergounne, Paris, Gauthier-Villars, 1874. From the
French, by Prot. A. 8. Hardy, Dartmouth College.
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former; yet, between these series there
is this difference: the first may be in-
definitely extended, but the second can-
not. After the term a, we should ob-
tain 0, but beyond this point the quantity
a must be of such a nature as to permit
our operating on zero as we did on the
other terms . . . ., 4a, 3a, 2a, a.
But this is not always possible. If, for
example, @ represents a material weight,
as a gram, the series . . . ., 4a, 3a,
2a, a, 0, cannot be extended beyond 0; for
while we may take 1 gram from 3, 2 or 1
gram, we cannot take it from 0. Hence
the terms following zero exist only in
the imagination ; they may, therefore, be
called imaginary. But instead of a se-
ries of weights, let us consider them as
acting in a pan A of a balance containing
weights in the other pan also; and for
the purpose of illustration, let us sup-
pose the distance passed over by the
arms of the balance is proportional to
the weight added or withdrawn, which
indeed would be the case if a spring were
adjusted to the axis. If the addition of
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the weight » to the pan A moves the ex-
tremity of the arm A a distance »’', the
addition of the weights 2%, 3n, 4n,
.» will cause this same extremity to
move over the distances 2n', 3n’, 4n',
., which may be taken as meas-
ures of the weight in the pan A: this
weight is zero when the pans are bal-
anced. By placing the weights n, 2n,
3n . . . ., in the pan A, we may
obtain the results »’, 2n' 3n’ . .
or, by starting with 3n’ and w1thdraw1ng
the weights, the results 2»', n’, 0. But
these results may be ren.ched not only
by taking weights out of the pan A, but
also by adding them to the pan B. Now
the addition of weights to the pan B
can be continued indefinitely; and in so
doing we shall obtain results expressed
by—n',—2n',—3n’, . . . ., and these
terms, called negative, will express quan-
tities as real as did the positive ones.
‘We, therefore, see that when two terms,
numerically equal, have opposite signs,
a8 3n',—3n/, they designate the different
positions of the balance arms, such that
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the extremity indicating the weight is in
both cases equally distant from the
point 0. This distance may be consid-
“ered apart from direction, and be then
called absolute.

Let us consider the origin of negative
quantities in a case of another kind. If
in counting a sum of money we adopt
the franc piece as unity, we may operate
successively by subtraction on this sum,
and render it zero by taking away a cer-
tain number of francs. At this point
the operation becomes impracticable,
and, consequently,—1 franc,—2 francs,

are imaginary quantities.
Take now the nominal franc as unity,
for the purpose of estimating a fortune
made up of credit and debit. What we
call a diminution of this fortune might
take place either by a decrease in the
number of francs on the credit side, or
by an increase in the number on the
debit side, and by continuing either pro-
cess we should have a negative fortune
of—100 francs,—200 franes, . . . .
Such expressions gignify that the num-
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ber of francs of debt, considered ab-

stractly, exceed by 100, 200, those of

credit. Thus—100 francs,—200 francs,

. ., which in the former case can

express only imaginary quantities, here

represent quantities as real as those de-
" noted by positive expressions.

2. These ideas are very simple ; yet it
is not so easy, as it at first seems, to set
them forth clearly, and to give them the
generality which their application re-
quires. Moreover, the difficulty of the
subject will not be questioned if we re-
member that the exact sciences had been
cultivated for many centuries, and had
made great progress before either a true
conception of negative quantities was
reached or a general method for their
use had been devised. Moreover, it was
not our intention to endeavor to state
these principles more rigorously or more
clearly than they are to be found in the
works which deal with this subject ; but
simply to make two remarks on negative
quantities. First, that whether a nega~
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tive quantity is real or imaginary,* de-
pends upon the kind of magnitude meas-
ured; and, second, when we compare
two quantities which are of a kind yield-
ing negative values, the idea involved in
their ratio is complex, including, 1° a
relation dependent on number, consid-
ered absolutely; 2° a relation of direc-
tion, or of the sense in which they are
estimated, a relation either of identity or
opposition.

3. If now, setting aside the ratio of
absolute magnitude, we cousider the dif-
ferent possible relations of direction, we
shall find them reducible to those ex-
pressed in the two following propor-
tions :

+1:4+1;:—-1: -1,
+1:-1;:—-1: +1.

* The sense in which these words are used 1is suffi-
ciently determined by what precedes: the extension
bere given to their ordinary meaning seems permissi-
ble, and is moreover not wholly new. In optics, what
is called the imaginary focus, as distinguished from
the real, is the point of intersection of rays which
have no existence, in a physical sense, and which can.
be considered, in some =ort, as negative rays.
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Taken directly and by inversion, these
proportions show that the signs of the
means are alike or different when those
of the extremes are so. Now let it be

required to find the geometrical mean
between two quantities of different signs,
that is, to find the value of z in the pro-
portion

+1l:2 e —~1.

Here we encounter a difficulty, as when
we wished to continue the decreasing
arithmetical progression beyond zero, for
2 cannot be made equal to any quantity,
either positive or negative; but, as be-
fore, the quantity which was imaginary,
when applied to certain magnitudes,
became real when to the idea of absolute
number we added that of direction, may
it not be possible to treat this quantity,
which is regarded imaginary, because we
cannot assign it a place in the scale of
positive and negative quantities, with
the same success? On reflection this
has seemed possible, provided we can
devise a kind of quantity to which we
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may apply the idea of direction, so that
having chosen two opposite directions,
one for positive and one for negative
values, there shall exist a third—such that
the positive direction shall stand in the
same relation to it that the latter does
to the negative.

4. If now we assume a fixed point K
(Fig. 1) and the line KA be taken as

positive unity, and we also regard its.
‘direction, from K to A, and write KA
to distinguish it from the line KA as
simply an absolute distance, negative
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unity will be KI, the vinculum having
the same meaning as before, and the’
condition to be satisfied will be met by

KE, perpendicular to the above and with
a direction from K to E, expressed in
like manner by KE. For the direction
of KA is to that of KE as is the latter
to that of KI. Moreover we see that

this same condition is equally met by
KN, as well as by KE, these two last

quantities being related to each other as
+1and —1. They are, therefore, what
is ordinarily expressed by +4/—1, and
—4/—1. In an analogous manner we
may insert other mean proportionals be-
tween the quantities just considered.
Thus to construct the mean proportional
between KA and KE, the line CKL must
be drawn so as to bisect the angle AKE,
and the required mean will be KC or
KL. So the line GKP gives in like
manner the means between KE and KI,
or between KA and KN. We shall
obtain in the same way KB, KD, KF,
KH, KJ, KM, KO, KQ as means be-
tween KA and KC, KCand KE . . . .

/:K::Af’,'l
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and so on. Similarly we might ingert a
greater number of mean proportionals
between two given quantities, and the
number of constructions involved in the
solution would be equal to the number
of ratios in the required series. Thus,
for example, to construct two means,
KP, KQ, between KA and KB, we
should have the three ratios KA : KP: :
Kpr: KQ :KQ : KB, and necessarlly,
angle AKP=angle PKQ=angle QKB,
the vinculum indicating that these angles
are similarly situated with respect to
the bases AK, PK, QK. Now this may
be effected in three ways, namely, by
trisecting 1° the angle AKB; 2° the
angle AKB increased by 360°; 3° the
angle AKB increased by twice 360°, giv-
ing the three conmstructions of Fig. 2,
2 bis, 2 ter.*

T The principle on v(rhicli these construétloni l-ei};l
stated generally, is that the ratio of two radii KP, KQ,
making an angle QKP, depends on this angle when
these radii are considered as drawn in a certain direc-
tion, and that this ratio is the same as that of two
other radii KR, ﬁ-. making the same angle: but all

though this principle is, in & way, an extension of that
onwhich the geometrical ratio of a positive and nega-
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. P
5. Observe, further, that the relations
just established between the quantities

tive line wa.§ Ve-s-t_o:blished,ilt lsiileré only an thOt;le;ﬂ
whose legitimacy must be proved, and whose conse-
quences, illt then, are to be independently confirmed.
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R—A, I—(ﬁ, m . . . « . do not
require that the directions which these
quantities fundamentally involve should

be estimated from a single point K; but

that these relations are equally true for
every such expression as KA, indicating
an absolute distance KA and taken in
the same direction, as KA/, K'A”,
KA BK, . . . . (Fig.8). For,

’ ’
K A Fig.3.

" ’
K A

i rrr

B K K A A

following with respect to this new quan-
tity the same reasonings as before, we
see that if KA, K'A’, K"A”, .

are each positive unity, AK, A'’K’, A”K"
are negative unities; that the mean pro-
portional between +1 and —1 can be
expressed by any line whatever, equal in
length to the above and perpendicular
to them in direction, and taken at pleas-
ure in either of its two directions, and
g0 on. To make this clear, consider a
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particular case as, for example, a given
foree assumed as unity and represented
by KA, acting parallel to KA in the
direetion from K to A, its point of appli-
cation being arbitrary; this unit force
may be expressed by a line parallel to
KA, with any point as an origin. The
negative unit would be an equal force
with a parallel action line, but acting
from A towards K, and could likewise be
represented by a line drawn from any
point parallel to the former one, but in
an opposite direction. All that is neces-
sary, then, to the application of the
principles already developed regarding
radii is that the qualities, indicated by
plus and minus, which we attribute to a
certain quantity, should depend upon
opposite directions between which there
exists a mean; and that the relations
between all lines which will represent
such a quantity be then conceived as the
same which existed between the radii.

6. From these reflections it follows
that we may generalize the meaning of
expressions of the form AB, CD, KP,
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. . . , every such one repre-
sentmg a line of a certain length, par-
allel to a certain direction, the latter
taken definitely in one of the two oppo
site senses which this direction presents,
with any point as an origin; these lines
themselves being capable of represent-
ing magnitudes of another kind. As
they are to be the subject of the follow-
ing investigations, it is proper to give
them some special designation. They
will be called lines having direction, or
simply, directed lines.* They will be
thus distinguished from absolute lines,
whose length only is considered without
regard to direction.t

7. Applymg the terms of common

[*The directed lines of Argand are, of course, Ilam-
ilton’s vectors, and thejabove principle is simply a
statement of the fundamental conception of a vector,
i. e. that all quantities having direction as well as
magnitude are vectors, and that vectors are not
changed by translation without rotation.—TraNs.|

+ The expression lines having direction ig only an ab-
breviation of lines considered with reference to their
direction. This remark will show that we do not pre-
tend to create a new nomenclature. but, by this de-
nomination, both to avoid confusion and secure
brevity.
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usage to the different varieties of direct
ed lines which arise in connection with a
primitive unit KA, it is seen, that every
line parallel to the primitive direction is
expressed by a real number, that those
perpendicular to it are expressed by im-
aginaries of the form *a4/-1, and,
finally. that those having other diree-
tions are of the formxtatby/—1,
and are composed of a real and imagi-
nary part. But these lines are quanti-
ties quite as real as the positive unit;
they are derived from it by the associa-
tion of the idea of -direction with that
of magnitude, and are in this respect
like the negative line, which has no imag-
. inary signification. The terms real and
tmaginary do not therefore accord with
the above exposition. It is needless to
remark that the expressions impossible
and absurd, sometimes met with, are
still less appropriate. The use of these
terms in the exact sciences in any other
sense than that of not true is perhaps
surprising.*
"% There was a time, when led by the very nature of
the case to admit negative values in the discussion or
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An absurd quantity would be one
whose existence involved the truth of a
false proposition; as, for example, the
quantity x, satisfying at once =2, =3,
whence 2=3. The admission of such a
quantity into the calculus would entail
consequences as contradictory as 2=3;
but the results obtained from the use of
the so-called imaginaries are in all re-
spects conformable to those derived
from reasonings in which only real
quantities appear. We might thus fore-
see the impropriety of a nomenclature
which classifies truly absurd quantities
and the even roots of negative quanti-
ties together, and it was a consciousness
of this impropriety which first gave rise
to the ideas developed in this essay. It
ig thus that we are led to a new nomen-
clature.t
l;bstract quuntltlers'.r geourneters h-uvingr 7aippii:|re_nrtlry
some difficulty in imagining that less than nothing
could be anything. applied to such values the term
faygses. The use oi this word, in its original vicious
sense, ceased when the conception under which it
arose was rectified.

1 It is amost needless to observe that we refer only

to the confusion which arises from the terms, and that
a corresponding confusion of ideas is not implied.
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It is to be observed that while there
exists an infinite variety of directed
lines, practically they are all referred,
as will be shortly shown, to KA, KC,
KB, KD, the position unit being KA
the negative KC and the means KB and
KD (Fig. 4).

Fig. 4.
B

Ttis, furthermore, convenient to classify
any two opposite directions under one
head, to which we shall apply the term
order. The primitive KA with its nega-
tive KC we shall designate as the prime
order, and the means KB and KD as the
medial order. 'We shall speak of a
prime quantity or medial quantity
when we refer to one of & prime or
medial order, respectively.  These
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terms are derived from the mode of
generation of these quantities, and from
the conception under which they are
regarded real. We might apply the
general term intermedials to all others
which it is not necessary to designate
specially.”

8. In accordance with what precedes,
we may also modify the language of
so-called imaginaries in such a way as
to render this part of the subject more
simple. In writing + «4/—1or-ay/—1,
we indicate explicitly the way in which
the quantity is generated, which in cer-
tain cases may be useful: but ordinarily
we leave the mode of generation out of
consideration, and 4/—1 is only a par-

*1t has been already remarked that the relations
-said to exist between lines, when we take their di-
rections into account, cannot as yet be regarded other
than hypothetical. It is, therefore, very far from our
purpose to propose the substitution of the nomencla-
ture above described for that commonly employed ;
but to make use of it only because, in general, it is
desirable to avoid the employment of terms whose
real meaning is at variance with the ideas we wish to
express, even when we are concerned with an
‘hypothesis.
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ticular kind of unit to which the number
a is referred. It is, therefore, not abso-
lutely essential to keep the mode of gen-
eration in view. Again, the expression
a4/ =1 shows 4/—1 to be a multiplier
of a; but really 4/—1, in ay/—1, is no
more a factor than is +1 in +a, or —1
in —a. Now we do not write + 1.a,—
1. a, but simply + @, — @, and the sign
which precedes « itself indicates
what kind of a wunit this number
expresses. We may then apply a
similar method to imaginary quanti-
ties, writing for example ~a and A-a
instead of +a4/—1 and —aa/—1, the
signs ~ and - being reciprocally posi-
tive and negative. To multiply these
signs, we observe that either multiplied
by itself gives —, and, consequently,
multiplied by each other they give +.
Moreover, a- single rule, applicable to
any number of factors, may be estab-
lished; let every straight line, horizontal
or vertical, in the signs to be multiplied,
have a value 2, and every curved one a
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value 1; we shall have for the four signs
the following values:

~=1, —=2, 4=3, + =4.

Then take the sum of the values of all
the factors and subtract as many times 4
as is necessary to make the remainder
one of the numbers 1, 2, 3, 4; this re-
mainder will be the value of the sign of
the product; and so, for division, sub-
tract the sum of the sign values of the
divisor from that of the dividend, hav-
ing added if necessary a multiple of 4 to
the latter, and the remainder will indi-
cate the sign of the quotient. It is to
be noticed that these operations are
those of multiplication and division by
logarithms; this analogy will be brought
more fully into view.

These new signs would abridge the
notation,* and perhaps render the calcu-
lus of imaginaries more convenient,
errors of sign being sometimes easily

*The quantity m +n¥—1 being denoted by m~n, or
by m-n, the single sign ~, or 4, replacing the four
signs 4, ¥, —, 1.
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made.* We shall employ them in what
follows, without implying on that ac-
count that they should be adopted.
Doubtless to every innovation, even a
rational one, there is an intrinsic object
tion; but no progress would be made if
they were rejected, for the only reason
that they are contrary to usage, and
their trial, at least, is permissible.

9. We are now to examine the various
ways in which directed lines are com-
bined by addition and multiplication,
" and to determine the resulting construc-
tions. Suppose, first, that we have to
add to the positive prime line KP
(Fig. 5) the line KQ, also a positive

Fig. 8. '
Xx_Q $ P ®

* For example, let it be required to multiply —m ¥ —¢
by +n¥—cd. The product of the two coefficients is
—mn ; that of the two radicals is —c ¥d ; and the final
product is +mnc¥d. In the new notation the two
factors are ~m¥c, An ¥ed, or +m ¥e,~n ¥ed, and by
the rule we at once obtain +mnc ¥d. This advantage—
if it be one—would not exist for an experienced calcu-
lator, who by a simple inspection of the factors would
read the product; but not every one possesses this
faculty.
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prime; the construction would not differ
from that of finding the sum of the
absolute lines KP, KQ; it consists in
laying off the distance PR=KQ on the
prolongation of KP. We then have
KP+KQ=KP+PR=KR. To add a
negative prime line QK to another PK, '
the construction is the same, but in the
opposite direction, and we should have
PK+QK=PK+RP=RK. In genersl,
if we are to add two lines of the
same direction, AB, AC, we take in
this direction, PQ = AB, QR = AC,
and we have PQ + QR =AB + AC=PR.
If we are to add to the positive line KP
the negative QK, we take a distance
PS=QK in the negative direction from
P, and obtain KP+QK=KS=QP. The
same course is pursued for any other
order.

Now, the principle underlying these
constructions is that we regard P, the
final point of KP, as the initial point of
the line to be added, and that we take
respectively for the initial and final
points of the sum, the initial point of
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KP and the final point of the added
line. Applying this same principle to
lines of other orders, we conclude that
K, P, R, being any points whatever, we
always have KP + PR=KR; and as each
of the lines KP, PR may also be the
sum of two lines, as KM + MP, PN + NR,,
M and N being arbitrarily chosen, we.
conclude that, in general, A, B; M, N,
O,...... » R, S, T being any points
wha.tever, AB =AM +MN+NO+O .
+...4...R+RS+ST+TB. The
points A, B, M, .. .. may coincide or
be so situated that the lines AM, MN,....
coincide, intersect, etc. These circum-
stances are matters of indifference.*

10. Every directed line may thus be
decomposed in an infinite number ot
ways. To decompose, for example, the
line KP (Fig. 6) into two, one of an
order KA, the other of an order KB;
draw, through P, PN parallel to BK, and
we have KP=KN+NP. Or we might

* This rule is reached by induction, and what was

said in the note to No. 4, on the geometrical ratio of
directed lines, is here applicable.
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draw PM parallel to KA, and then
KP=KM+MP ; but these two express-

ions are identical, because KM=NP and
EN=MP. As there is no other way to

B~ Fig: 6.

L

K N A
effect the proposed decomposition, we
conclude that, if A and A’ are of the
order a, B and B’ of another order 4, and
we have the equation A+B =A’+B/,
then A=A’, B=B".

11. Let us now pass to the multipli-

cation of directed lines, and let us first
construct the product KBx KC (Fig. 7),

Fig.7, N

..\.

the factors being units, but not prime
units. Construct the angle CKD=AKB.
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From what was said in No. 4, Note I,
we have KA : KB:: KC: KD, whence
KA X KD=KB X KC; but KA= + 1,
hence KB X KC = KD. Therefore, to
construct the product of two directed
radii, lay off, from the origin of arcs, the
sum of the arcs corresponding to each
radius, and the extremity of the arc thus
laid off will determinethe position of the
radiug of the produet; this, as before, is
logarithmic multiplication. It is un-
necessary to show that this rule applies
to any number of factors. If the factors
are not units, they can be put under the
form mXB, n.KC, . . ., m and n being
coefficients or positive prime lines, and
the product would be (mn ....). (KB.
KC....)=(mn...).KP. Now, the
product of the positive prime line
(mn . . .) by the radius KP is this very
line, drawn in the direction of this
radius. Division is the inverse of this
operation, and its explanation in detail
is unnecessary.

12. By means of these rules we may
operate on directed lines as on absolute
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ones. We now proceed to some appli-
cations of the principles already laid
down, and we shall first state some im-
mediate consequences which are of most
frequent use.

Fig. 8.

§1. If AB,BC, . . . . , EN (Fig. 8)
are equal arcs, » in number, and we
make KB=w, we shall have KC =1?,

EKD=«, . . . . ,EN=ur
§2. If we lay off the arcs below KA, as
AB,B'C, . . . . ,E'N', weshall

have




43

KB'= —1-, KC'= l,—, ..., KN'= —1—
u u ut
§3. Hence
:E]_3=u’, Ii?:u‘,....,—-—KN = un,
KB’ KC' KN’

§4. If, on corresponding radii, we take
Kpg=Kg, Ky=Ky', K6=K¢', . . . .,
the distances Kg, Ky, K6, . . . being
arbitrary, we obtain

]ﬂ? =, Iﬂ, =u', Eﬁ =u’ .....
Kg Ky’ Ko’

§56. If on the radii KA, KM, KN as
bases, similar and equal figures be con-
structed, a, a, m m and n bemg homologous

lines, then m = @.X KM, n = a X KN,

whence ——— -2, or m.KN=n.KM.
KM N

§6. MN being any arc of the circum-
ference, it may at times be convenient
to denote, in general, by K.MN the
directed radius drawn though the ex-
tremity B of the arc AB=MN, A always
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being the origin of arcs. We should
thus have

K.MNXK.PQ=K.(MN +PQ),
and K—'—MN—zK(MN—PQ).
K.PQ

§7. If KB has the same direction as PQ,
we have PQ=PQXXKB; for the abso-
lute line PQ may be regarded as positive
prime.
¢1§8. If we have the equation r.PQ=
#". MN; #', " being unknown directed
radii, and PQ, MN lines of the same

Fiz- 9

direction, or absolute lines, it follows that

#’=¢", and consequently PQ=MN, or
PQ=MN. .

"~ 13. NowletAB,BC, . . . .,EN

(Fig. 9) be equal arce, n in number;
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then KN=KB"; but KN=Kv» + ¥, and

KB=Kg+ pB; hence
Kv+vN=(KB+fB)~

Let the arc AB=a, and, therefore,

A_E =na; then Kf=cosa, Kv=cosja,

pB=~sgina, vN=~sinna; and the

above equation becomes -

co8 na~sin na=(cos a~sin a)”.

This theorem, expressed in the ordi-
nary notation by

cos nat 4/ —1sin na= -
(cos a4 4/ —1sin a),

ig a fundamental one in the theory of
circular functions; among its uses is the
expansion of sin z and cos 2 into series.

Developing the binomial, equating
separately the terms of the same order,
and dividing by ~1 the equation be-
tween the medials, we have the expres-
sions for cosna and sinna; then making
na=w, and supposing n to increase and
a to diminish,  remaining constant, we
have, at the limit,
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e =1 ai’. L‘_ _x—...i.
o8e=l—o+93.24728456 "’

. : ® '
ME=2—5u+3345 284567 "

14. From KN=KB" we have KB=
—_1
KN", whence

Kf+ fB=(Kv + vN)* =K

1(1
1 -(=—1) 1 _
TR S LI SR )—,,‘ g5y

3 K»r vN*
e )G2) o,
t———a3 —Kv" N'+....
1(1 .
L RCwliE
11;(3—1)(},“2) IN)
Y (S
23 s

Substituting the preceding values of
Kv and N, and noticing that

vN _ ~sinna _

Ky cosna

~tan na,
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equating separately the terms of the
same order, multiplying the equation
between the medials by — —rﬁ— =~ n, and

making the same supposmon as before,
there results

o=t x;tanx tan'z_ten'z
= R e .

15. Let (Fig. 10) the arcs AB=a,

Fig. IO,

AC=b, and let CD be taken equal to
AB. Then (No. 11), KD=KBXxKC.
But

KD=Ko + é‘D_cos(a+ b)~sin(a+0b),
KB=Kf+ B=cosa~sina,

KC=Ky+ yC=cosb~sinbd; hence

cos(a+b)~sin(a+b)
=(cos a~sin a)(cos b~sin b).
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Expanding the second member and
equating the orders separately, we have

cos (a+b)=cos a cos b—sin a sin b,
sin (@ + b)=cos @ sin b + sin @ cos .

16. Let AC=a, AB=b (Fig. 11); draw

Fig. ll.
o
8
AE
KA
7 8p €

the chord BC, and the radius KD, bisect-
ing the angle BKC. Make AE=BD=

2”, and draw KE and Ee Then

Ky +yC— (Kf+pB)=cosa ~sina—
(cos b ~sin b) =cos a—cos b~ (sin @ —
sin )=KC—KB=KC +BK = BC = 2dC
=[No. 12, § 5] 2¢eExKD=

2 sin ﬁ_—[—(cosa +8 sin 2F b) ;
2 p 2 )
whence
.a—b . a+b
cos a—cos b= —2 sin—,—. sin ——,
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a-b a+b

sin a—sin b= 42 sm—2— CO8 ——. 2

17. Divide the arc AN (Fig. 12) into
n equal parts. The radii KA, KB, KC,
, KN are in geometrical progression,
but the corresponding arcs are in arith-
metical progression, and may therefore

Fig. 12,

be taken for the logarithms of these
radii. Put mAN=Ilog KN, m being the
arbitrary modulus; we then have log KN
=m.AN=mnAB. Making » infinity, so
that the arc AB may be regarded as a
right line perpendicular to KA, we have
AB=~AB, or AB=+AB, and log KN
=~mn.AB, or log KN=mn. AB; for
since m is arbitrary, we may substitute
m in place off{um Now AB=AK +KB

=—1 4+ KN 7; hence



650

_ 1
log KN=mn (_1 +EKN E), and, putting -
EN=1+u, log 1+x)=mn

—1+1+-2+
2 2

EEE TS

2.3

4

_ ( r o2
=mE—gty ot )
18. Let us now divide the two equal
arcs AN, AN’ (Fig. 13) into n equal
parts; draw the tangent nn’ and the
secants Kb, Ke, . . ., Kn; K&', Kc/y....,
Kn'.
‘We have seen (No. 12, §4) that, when
EB=uv,

-If—f_—:u’, I_{f = ... ,—K,_n: = u?,
K¥ K¢’ Kn'
Thus, as before, the quantities
Linp o S 3
KA K6 Ko Ew

are in geometrical progression, and the
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corresponding arcs may be taken for
their logarithms, as for example

ﬂ\@i)@h

~

&

o AN=mlogK£:, .

Let AN=2, and consequently
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"Kn=KA + An=1~tan x,
"Kn'=KA + An'=1tanz;
then we have at once
x=mlog lztﬂ.
1+tana
But we have seen the arc
tan’a2  tan'x

a:=tana;—3+5—....;
hence
1~tanz tan’z
mlogmm_tana:———g—
+ tan®z _
5

Putting ~tana=2, this becomes

. 1+2 2 2 2

mlog (1—_—z)=~(z+ —3—+—5—+7+ ),

or, dividing both members by ~~ 1, and

noticing that, m being arbitrary, m may
m

<1’

be substituted for

z zl 6 T

1
m]Og(liz)ZZ-l- —3-+—5“+-,7+ « e e .

19. Resuming the equation,
1~tanx

m:mlogm N
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and making ~tanz=z as before, let us
substitute _m2_ for m, or, what is the
same thing, make 2=~2x in the first
member. These changes give

1+2 =lo

~2:c—-mlog1_ g
2 (1424222 +22"+...),

and
~2ne=mlog(l+2z+22"+22'+. . .)"

Now make ~2nz=y, and suppose n
to increase and = to decrease without
limit, ¥ remaining constant; z=~tan
will then be infinitely small; hence, in
the second member of the development
the terms following 2z may be omitted,
under which supposition the equation
reduces to y=mlog(l + 2z)".

The same supposition gives z=~tanx
=~a, 2ng=~2nx=y, and, therefore,

2z= % ‘We may then write

y=m log(l + l)n
n(n-1) g_/_
n’
3

_mlog(l +n. ——+ 12

n(n—l)(n—2) Yy
+_—m——n_i+ . . -),
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and, finally, since n=w,
,/l y' yd )

y=mlog (1+y+4 + g3+ 3ga
20. Suppose the arc AN (Fig. 14) to

Fig. 14,

P

) \
,.
K ]
be divided into an infinite number n'of
equal parts, of which AB is the first.

Take AP=4AN, and draw AN, KP and
Pgp. We have

AB=AK + KB=—1+KN#
=1+ (EA+ANyi=—1+(1+AN).
1 — %(%—1)
=—1+1+;-AN+——2——
+l(_‘__1)(l_2)
+n n n

2.3

AN

AN+ L L .




_1( AN’ AN*

:;(AN— 9 -—T+ . )

and n.AB:AN—A—-l;' %;Q?'
+ . . . . 3

whence 1. AB=~-n. AB=~are¢ AN, and
AN=2pN=[No. 12, §5] 2¢P xKP
AN AN )
’

=~-28in AN (cos ~-8in
2 - 2 2

or, putting the arc A—2-N=a, AN =~-2sina

(cos a~sina), and therefore
AN*'=—(2sin a)*(cos 2 a~sin 2a),
AN'—+(2 sina)*(cos3 a~sin3 a),
AN‘=+ (2sina)* (cos4a~sm4a),
AN°’=~ .o

Substituting these va.lues in the above
series, retaining the medial terms only,
gince this series is equal to n.AB=~ 2a,
and dividing by ~1, we have

(2sin @)’sin 2a

—_—

(2sina)’cos3a {2sina)‘sinda

3 4

2a¢=2sina.cosa+
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Since the sum of the prime terms must
be zero, we have

0=—2sina.sing + 2502)"c08 %¢ sm“; cos2a
(2sina)’sin3a (2sin a)‘cosda
3 4 T

an equation which may be divided by
2sin a.

21. Divide the circumference (Fig. 15)

Fig. I8,

into » equal parts, AB, BC, . . . GA,
n is now a finite quantity. We propose
to find the sum S of the mth powers of
the radii KA, KB§. . . . KG.
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Let KB=u, whence KC =u', KD=
w, ... ,_KG =un—1 KA =wr=1; then

S=14+wumnyutmy | ., 4oy—1m
and

UPS =y um 4 4 yB—1m | ynm,
but wm=(yn)m=1m=1;
hence »mS=S, and (um—1)S=o.

If ym=1, this is an identical equation,
without meaning; but, in this case,
utm=1 uy3m=1,.. .; hence S=n. In
all other cases S=o.

If we denote by P/, P, P'",. ..., P®
the sum of the first, second, . . . . ,
nth powers of given quantities, and by
Im, ", i, ... ., I® the sum of
the products of the same quantities taken
one and one, two and two,. . . ., » and
n, it is well known that
nII® =P’ [In-1) —P"[[n—2)

+P" =3 — |
+PO-8 """ F PO L PO~D]]' FPw),
the upper and lower signs corresponding
to the cases in which » is even or odd,
respectively. The demonstration of
this theorem may be reduced to a
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simple algebraic transformation. If we
apply it to the radii KA, KB, . . . ., KG,
which are n in number, we shall obtain
P'=0,P"=0,P"" =0, ....,P0N=0
PW=n; whence
II'=0,Il'"=o,. ...,
Hn=-D=¢, nJIM=xn,

and [IM=x1=—(—1)"

These properties may also be derived
from the equation a»—1=o0, whose roots
are KA, KB, . . . ., KG.

22, Let us now assume some point
other than the center K (Fig. 16), as V,
and find the produet of VA, VB, VC,.....
V@G

Since VA=VK + KA, and VB=VK +
KB, . . . . wehave
VAVBYC . . . VG=

(VK+KA)Y(VK+KB) ...

(VK+ K@) =VK*+ II'VE*-14
IF'VKs-34 I[W-DVK+ I ®,
Now we have just seen that the coeffi-
cents I, I, IT”, . . ., to IT"-" are
v and that /I''==—(—1)*. Hence
VRYVC... VG=VRr—(—=1)*
=‘—K\'\"-(—l)":\l‘i‘;‘—l\\—l)l,
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To construct KV», lay off AKU equal
to n times AKV. Make KU = KV7,
whence KU = KVs. Therefore

[V

VKr—1=KU—-1=KU-KA
=KU+AK=AT,
and VAVBYVC...VG=(—1)"AT.
If we consider VA, VB, ...., VG and
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AT as positive prime lines, we may make
VA=+".VAVB=r".VB,.... VG=r®VG
and AU=p.AU; p, 7, 7", ..., r™ being
directed radii or the roots of unity. We
should then have
o', r®VAVBVC. . . VG
=(—1)"p.AT,
and (No. 12, § 8), VAVB....VG=ATU.
For example, let KV=x, KU=a", the
angle AKV=a, the angle AKU=1na, the

angle AKB= 2—: ‘We should then find
AU=o¥"—227 cos na+1,

VB'=x'—2x cos (a— —) +1,
n

VO =x'—2z cos ( 47”) +1,

VD=« —2a:cos ( (_;f) +1,
n

VA’=« —200008( - 2—”—) +1
=x'—2xcosa+1,

and, squaring the equation VA.VB .
VG=AT, we shall have
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¥ —2anhcos na+1=

{é:'—2zcos(a—2%t)+l }
.>< {z’—2xcos(a—-47—:r) +1 }

x{w"—2xcos(a—(—i—:£)+1 ;\
X oo X@—2xcosa+1),

there being n factors in the second
member. :

The development of the rational
factors of the first or second degree of
the binomials a"+1, a*—1, is obtained
by making cosna=1 and cosna=0 in
this formula. On this well known fact
it is unnecessary to be more specific.

23. If V (Fig. 17) be on the circumfer-
ence, we have

AU=25in "—2“
VA=2sin %,
V(4
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. 27 a
VC —2 s1n (; ——2-'),
VG=2sin { (n—l)z_ a }
n 2

o Fig: 17,

Hence, substituting a for-% and
. [nm .
sm(;——a )=sm(7t—a)

for sin a, there results
2 sin na=

on, sin(%——a)sin(?g— )sin("%t— )

Xsin{ —(—n—:nl—)”——a }sin(%—a.)
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. n . 1
Making a=g - b, we obtain na=-g —nb

and sin na=cos nb. The substitationof
these values gives '
2 cos nb=2"%cos

%(_n__“ll’_r—b }cos{(—ni)’-t—b }

2n 2n
X cos {w—b } .. Xcos
2n
27
{ [n—(2n-1)]n }
—_—_ b}
2n
24. In Fig. 18, make the arc AB=arc
Fig. 18.
B
K A
G

AG; then KN=KB 4 BN and KN:-KG
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+GN; whence we obtain, observing
that BN + GN=0, and that. KG==KB-1,
2KN=KB+KB-1.
Raising both members of this equa-
tion to the nth power, » being a whole
number, it becomes

(2KN)*=KB" +nKB*—2+
——"(nz—l).K_Bﬂ—4+ e+

20 1) KB-m+4.4 nKB-n+2+ KB-n.

_Making the arc AB=a, then KN=cos co8 a,
KB=cosa~sin a, and, in general, KB®
=cos ma~sin ma. Substituting these
values in the above equation, and, since
the first member contains no medial
terms, suppressing those of the second
member, we have ‘
(2 cos a)*=cos na+ncos(n—2)a+

n——(n2—1)cos(n—4)a+ . +n__(n2— 1)
cos(—n+4)a+ncos(—n+2)a
+ cos(—na).

Since, in general, cosm=cos(—m), the
terms of the second member may be
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added two and two; but two cases must
be distinguished, according as n is even
or odd. In the first case, the number of
the terms in the second member is odd
and the middle term stands alone; this
term is

n(n—1)(n—2).. { ”—(%:12 }

n
1 .2. 3... -5
n(n—1). .. (—g—+l)
cos(n—n)a= )
1L2.3...5

In the second case, all the terms are
doubled, and, if wé begin the series with
cosna + cos (—na) = 2cos na, the last
term will be

—1)(n— ...n-—’—b——l-—
[Jo=00-). . {n (1)}

n—1
1- 2- 3 . o o T
cos [n—(n—1)]a=.
a(n—1)(n-2)..."F3
22— cos a.

1.2.8.
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In the same way may be found the
value of (2sina)*. 'We have NB=NK +
KB,NG=NK + KG; but NG=—NB and
KG=KB-!; whence 2NB=KB—KB-1,
and

(2NB)*=KB"*—n. KB"—2+n(nz b,
KBt .. . 200 RB-wte

nKB-n+2+ KB-7=(~2sin a)®.

The upper and lower signs correspond
respectively to the cases in which » is
even or odd. Examine first the former.
(~2sina)® is then of the prime order,
and the medial terms in the development
of the second member may be neglected ;
whence
+ (2sina)"=cosna—ncos(n—2)a +

n(n—1) n(n-1)

2 +t—3
ncos(—n + 4)a—ncos(—n + 2)a + cos(-na).
In the first member we take thejplus

sign when % is of the form 4m, and the
minus sign when »n is of the form 4m 42,
The middle term, which is

cos(n—4)a—
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nn—1... (% +1)
’

n

1.2.3. )

as in the formula for the cosine, is not
doubled.

In the second case, (~2sin a)® is of a
medial order. Hence the prime terms
of the second member must be dropped,
which gives, after dividing the equations
by ~1,

+(2sina)"= sinna—nsin(n—2)a+p—(—n2_—1—)
sin(n—4)a—... —Z‘(—n2_—1-)sin(—n+4)a

+n8in(—n+2)a—sin( —na).

The + and — signs correspond re-
spectively to the cases in which » is of
the form 4m+1 and 4m+3. Here all
the terms are equal two'and two; for, in
general, sinm = — sin (—m), and the
number of terms is even. Uniting, there-
fore, as above, the equal terms, the series

n+1 o rms, thelast of whichis

reduces to D)
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n+-3
2
123,21
25. Suppose the arc AN divided into
n equsl parts AB, BC, . . . . , EN (Fig.
19).

n(n—1) (n—2)...
sina.

n Fig.19.

Draw AN and AB and through their

middle points, » and 4, the radii KM,KP.

Then

EB+EKC+KD+...+KN=

co8 a~sin a + cos 2a~sin 2a +
cos 3a~sin 3a + ... + cos na~

sinna=C~S,

where

C=cos a+cos 2a+cos 3a+... +cos na,

S=sin @+ sin 2a +sin 3a +... + 8in na.
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Let KB =u, KO=u’, .

KN=u"; whence

EKB+KC+...+EKN=u+v"+

u‘+...+u"=u
u

Py p— = — u=
B-KA KB+AK
AN N
AB’ B’
But (No. 12, § 4)

— __ na
nN—~sm§~XKM-_~sm——2— .U
PB=~sin— XKP=~sin——. u

Hence
~sin7~l22.u% sm%—fl a1
C~8= . U= u
~sm1 ul sinﬂ-
2° 2
t;inmz
_ 7(cosn+1 ~ginPt1
= g e~emTgTa
sin—
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Equating the terms of like order, we
have

sinn—a cosn——-+ 1 a
O= 2 2
sing—
2
gin sinn—-'-l a
and S= _2____2__
Bin—2-

26. A similar process will lead to the
reduction of
K=cos a+cos(a+5) + cos(a+2b)
+ ... +cos(a+nd),
2=gin a+sin(a+b) +sin(a+23)
+ ... +sin(a+nd).

To this end, describe the arcs AB=a,
BC,CD, ..., EN=b (Fig. 20), the latter
being » in number. Make, moreover,
AH=NI=b, and draw BI and AH. Then
if KH=u, KB=v, we have

ITC:vu,K—Dzv_u_’,...., L
KN=vu®, Kl=vurti,
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Therefore
K~Z=v+vutou+... +vun=
vurtl—y KI-KB KI+BK

u—1 ~RKH—KA KH+AK
Fig. .
e ig. 20

~gin (——b) TK.(@AB+3BI)”

~sgin} bk—;‘(ﬁ -
NBin(”_”;l b).K.(AB+4BY)
~ginbd -
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or,-equating terms of like order,

< i—__sin (?—i—li'bé)cos (a + %)
sin}d

sin 1i+—1b sin a+b-71
and = s si)n*b( 2)-

27. What precedes is sufficient to
show that the method here presented
may be employed in trigonometrical re-
searches. It may also be of some use in
elementary geometry and algebrs, as will

now be briefly indicated.
8 Fig. 2.
X N A
G

28. Let Fig. 21 be constructed; its
simplicity and analogy, with those al-
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ready made use of, renders its explana-
tion unnecessary. It follows from the
rules of multiplication and addition that
KB x KG=KA®, and KB=KN + NB,
KG=KN+NG. Hence KA'=(KN + NB)
(KN +NG). Let KA=#, KN=a,NB=
NG=b. Then '

K=(a~b)atb)=a"+b"

F"- 22, ™

29. Any directed chord PQ (Fig. 22) is
of the same order and sign as the radius
KR, drawn in the direction of this
chord. Now the angle AKR is equal to

AP+ :Q ki ; for, drawing KM perpen-
dicular to PQ, we have
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arc AR=AP + PM + MR=AP +}PQ +

Z=AP+}AQ-AP)+ AT IAHT

The radius KR may therefore be ex-

pressed (No.12,§6) by K. (A—E#‘HI),
an expression indicating the direction: of
the chord PQ. On this expression we
also remark that the chord PQ being
indeterminate, the letters P and Q may
be interchanged, and for QP we should
have . (AQ+AP+m\
. (ArApeT)
2

an expression identical with the former;
for AP+ AQ=AQ+AP. We should in-
fer from this that PQ and QP have the
same direction, which is, however, notthe
case, since they are reciprocally positive
and negative. To solve this difficulty
we observe that the designation of an
arc by its two terminal points, as AP,
applies to an infinite number of arcs, as
AP +2nm, n being any integer. In such
expressions, then, as the above, of all
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these arcs that one should be taken
which conforms to the construction fol-
lowed in the establishment of the gen-
eral formula. Suppose the point Q to
move in the direction QRS until it
reaches P, and that, at the same time, P
moving in the same direction, reaches Q.
The chord PQ will then be whatwas
before the chord QP. The direction of
this chord PQ will still be

K,(Alif}%z') ;
2
but, in this last expression, the arc AP
should be estimated from A, round the
entire circumference, plus the arc AP
itself, so that this expression really dif-
fers from the former by the quantity
%’t =, as it should.

To avoid all ambiguity, it is sufficient
in the general formula
chord PQ having the direction

K.(API§Q+1);
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to consider the arc AQ greater than the
are AP, following along the circumfer-
ence in either direction from A to P to
determine the arc AP, and then con-
tinuing in the same, direction till Q is

reached. Thus for K . (i‘—r”#*—”)

we might write K . (%;?Q#'), the

arcs AP and PQ being estimated in the
same direction. In addition to the fore-
going it may be remarked that, if the
chord PQ is divided at N into any two
segments, the part NQ has the same

direction as K . (—Bw), and
the part NP, which relative to NQ is

negative, has the direction

K. (éP“-i-—AQ 1_7_?_—”5 _ k:’(A'P’-?A'Q —n)
2 2

Hence, remembering that in general the

product of two lines having the direc-

tions K.F@G, K.HI is in the direction of

K.(FG + HI), we conclude that the pro-
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duct NP.NQ will have the direction
K.(AP +AQ)- ,

30. Take now any four points P,Q,R,S;
remembering that in general MN=-NM,
we may write

QS.8Q=QS(QR +PS+8Q)=Qs. PR

Now, if the points P, Q, R, S are so
situated that the three products of the
final equation PS.QR+RS.PQ=QS.PR
have the same direction, this equation
will be true of absolute lines. This con-
dition will be satisfied if the points in
question are taken in the order P, Q, R,
S, on the circumference, in which case
PQ, QR, BS, PS are the sides of a quad-
rilateral whose diagonals are PR, QS.
In fact, these sides and diagonals being
so many chords of the circle, we may,
by the formula of the preceding article,
form the following table, the origin
of the ares A being supposed to imme-
diately precede the point P:




78

Chords. Directions.
] K. ( AP +;&S +7 )
QR K.‘(_AQ“;B‘*'Z'_)
RS K ( AR+;&S+ LA )
R ()
Qs K. ( AQ +1;S + 7 )
PRk (AL+AR+r)

and these expressions will be free from
ambiguity, because, on account of the
supposed order in which A,P,Q,R and S
are taken, these six chords are all taken
in the same direction.

Hence, in virtue of the principle cited
above, the three products PS.QR,RS.PQ,
QS.PR have the same direction, namely,
that of
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K. (AP+AQ+1;R+AS+27A').

Thus, then, for absolute -lines, we
have PS.QR=RS.PQ+QS.PR. This
demonstration, far more simple than the
ordinary one founded only on the com-
parison of similar triangles, is here
given only as illustrative of the use of
intermedials, of which little has been

said.

31. In this last article we propose to
show that every polynomial of the form
Xr+gXn-14 X2+, .. +fX+gisde-
composable into factors X+a of the
first degree. It is to be noticed that
a, b, .. . g are not necessarily reals, as
is ordinarily the case.

It is well known that the problem
consists in the proof that a quantity can
always be found which, substituted for
X, will render the polynomial zero, which
latter we make =Y. Denote by Y,
Y40 the values of Y obtained by
making X=p, X=p+pi, p and ¢ being
arbitrary numbers and p a directed radius
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or an indeterminate root of unity. We
then have Y, =p*+ apr—14bp*— 4. . .
+9 Yot oy=(p+pi)"+a (p + piy—1+
b(p+pi)*—2+... +9=Y(n+ipQ+p'R
+&0'8+...,Q R, S being known quan-
tities, dependent on p, n, a, b, ¢, ...,
and obtained from the development of
the powers of p+pi. If ¢be supposed
infinitely small, the terms containing ¢*,
&, ..., disappear, and we have simply
Ypton=Y(n+:pQ. Let KP have the.
direction of Y(,. Assume p so that ipQ
shall have the direction PK, that is of
the same order as Y(,, but opposite in
direction ; it follows that the magnitude
of Y(pt,i) will be less than that of Y(z:
similarly we muy obtain a new value
of Y which shall be less than that of
Y(p+ei), and 80 on, and finally therefore
a value of X for which Y=o.

To render the demonstration com-
plete, it must be remarked that the term
¢pQ may become zero. In this case we
should retain the succeeding term *p'R,
or, should this disappear, *p"S, and so
on. The reasoning remains the same,
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because the powers p’, @', . . . are quan-
tities of the same nature as p.

32. The method above explained rests
upon two principles of construction, one
for the multiplication, the other for the
addition of directed lines; and it has
been already observed that inasmuch as
these principles depend upon inductions
which are not securely established, they
cannot, as yet, be considered as other
than hypotheses, whose acceptance or
rejection should depend upon either the
consequences which they entail or a more
rigorous logic.

‘We might have dwelt more fully upon
the fundamental ideas which lead to
these results. We might have indicated,
by some comparisons, how certain points,
in the theories of Algebraand Geometry,
bear upon these principles admitted by
induction, whose truth is established
rather by the exactness of their conse-
quences than by the logic on which they
are founded ; but this discussion would
have contributed nothing essential to
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the foregoing, and we confine ourselves
to proposing the method of directed
lines as an instrument of research, whose
use is advantageous in certain cases, be-
cause geometric constructions offer, as
it were, a picture to the eye which facili-
tates purely intellectual operations.
Moreover, it is always possible to trans-
late the demonstrations founded on this
method into ordinary language.



NOTES ON THE

GEOMETRICAL INTERPRETATION

IMAGINARY QUANTITIES

PROF. A. S. HARDY.






NOTES.

The preceding treatise, by Argand, ap-
peared in the year 1806. In Vol. IV,
1813-14, of Gergonne's Annales de
Mathematiques, appeared an article en-
titled “ New Principles of the Geometry
of Position and Geometrical Interpreta-
tion of Imaginary Symbols,” by J. F.
Francais, Professor in the Imperial
School of Artillery at Metz, of which the
following is an abstract.

The author began by calling attention
to the distinction between the magni-
tude and position of a line, and to the
still incomplete state of the geometry
of position. He proposed the notation
@,y bg, . . . . to represent right
lines whose absolute lengths were a, ,
the subscript Greek letters denoting the
angles made by these lines with any
arbitrary axis of reference. Francais
used the expression “lines given in mag-
nitude and position,” to designate what -
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Argand called “ dirscted right lines.” In
the term ratio he included the relative
positionas well as the relative magnitude,
four directed lines being in proportion
as

a.:bg e, : ds,

when ‘b—lz:—f,» and -also f—a=d—y. In

such a proportion, the absolute lengths
are in geometriaal, while the angles .made
with the axis are in arithmetical progres-
sion; and the homologoue sides of any
two similar complanar figures are in
proportion. - In. eonformity with the
above deﬁniﬁon,- the proportion:

5# Dibp ey
involves the eqlmtlons - :
b .
—-=—=, and f-a=y—p,
whence B=%(a+y)

or a mean proportional between the
directed lines bisects their included
angle. So for the continued proportion

Ao tbg tcy ... . 0 tm,,

.
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we should have
i__?__' o,
== =

and f—a=y—f=pu—A.

He then proposed a second notation.
By the former a,=a, and 1,=1; there-
fore 1: 1,;:a: a,, ora, =a. 1., so that
a directed line might also be represented
by the symbol al,, o denotmg its
length and ¥, 'its ‘position. *

Lines parallel to the axis of - reference '
drawn from 'left (right) to right (left)
were distingiished as positive ' (nega-
tive) ; angles -éstimated above ‘(below)
the axis from right to léft were regarded
positive (negahve) This convention, in
connection with the above notation, gave
+1=1, —1=1,,, and therefore '
+a=ax(+1)=al,

and —ae=aX(=1)=a.l,.

And from the known relations
+1=e""=1 and —l=ex*¥=1
results :
+a=aX(+1)=a.e"¥-],

and —a=aX (--1)=a.ex"¥-1,
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He then proceeded to establish four
theorems :

L In the geometry of position, imaginary quan-
tities of the form +a ¥ —1 represent perpendicu-
lars to the awis of referemce, and, conversely, per-
pendiculars to the axis are tmaginaries of this
Jorm.

Demonstration.—The quantity +a¥—1 is a
mean proportional between 4-a and—a, that is,
between ao and an ; hence by the definition of
mean proportional is expressed by o, x; or,

2
it is perpendicular to the axis and drawn either
above or below it; and we have

+a¥=1=a .,and —a¥—1=a¢ .
t 7
Reciprocally, every. perpendicular to this axis
is represented, in conformity with the ahove

notation, by @ , and Is, therefore, by defini-

2
tion, a mean proportional between @o and @+,
or between -a and —a. It is therefore an im-
aginary of the form ta ¥ —1.

Cor. 1.—As signs of position, + ¥—1 is
identical with 1i -

2

. - g —
Cor. 2.—Moreover, since—1=14r=ex"¥=1>

— +2¥
we have also + V—l:ltzze T
. 3 .
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Cor. 8.—So-called imaginary .quantities are
quite as real as positive or negative quaatilies,
and differ from them only in position, being in
fact perpendicular t6 them.

M. Francais argued that this theory
of signs was more consistent than the
ordinary one of Cartesian geometry,
where, as abscissas and ordinates, two
kinds of positive and two kinds of neg-
ative quantities were admitted. He con-
tended that having once defined positive
and negative quantities, as laid off paral-
lel to the axis of abscissas, it was illogi-
cal to admit others not comprised in the
definition, and that the common theory
was thus faulty in admitting two incom-
patible principles where one was suffi-
cient.

TreoREM II.—Thesign of position 1. =¢* V"_l_

Demonstration.—Let the semi-circumference
of a unit circle be divided in the direction of
positive arcs into m equal parts, and radii be
drawn to the points of division; these radii
will form a progression both as to magnitude
and position, by definition. The two extremes

being 1o =41, and 1,=—1=¢" V:T, the means
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T I w..mbe'.

m .m [y )
- G (”_1)'
m ' 1 , om V—_ ween 4 m V_lmt .-
ATy ,
or, in general 1'-';:;"_”‘. "1 and ssﬁm;y be

é"’“‘_l
P

From ﬁhm theorem M.\ ancus dvet
the following corollaries::. - ' :

1. That by .taking . the loganthme of
each member of the last equation, av.—
=log (1.) ; showing that, in- the-gwm-
etry of position, arcs of circles are the
logarithms of ‘$he. eotrespondihg radii,
being affected with the sign /7 since
they are perpendicmlar to, the axis of
referenge ; explaining also the expres-
sion, “imeginary-ares-of a circle are log-
arithms,” and giving a rational interpre- -
tation of the symbolic equatian.

—«/— log(«/““)

2. That singe a.za.l., we have also
a.=a.es¥-1 :
3. That sincees¥-T —cou-}-sm««/ 1,

any angle whatever we have ﬂnany la=
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it follows thist d,==d cosa+asina.v/—1,
or that to express a directed right line,
we must take the sum of its: projections
in two yectangular co-ordinate axes;
each projection being taken with ite
proper sign of position.,

4. That for any such lines we may
substitute any' number, providied - that.
the sum of the projections of:thie latter
is equal to:the sii of ‘the }Mnes them-
selves: that is; we may writé ., 8s,. ..
M for « & pﬁm&e& we ha.ve !

Ay m.e‘f*’*«"::ae‘"‘-pbe"'*‘ e
poTer g s e Y1
Zéod§==2 aéosd+bcosﬁ

“ . +moos u,
or (B) ixsmf:aamaﬁ-bsmﬂ
.. .+msinu,

and conversely.

If the lines «,, bg, zs ete. form a
closed polygon, (B) will be satisfied, and
hence for any given line may be substi-

tuted a series of others, forming with it
a closed polygon; conversely fora series.
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of lines forming an unclosed polygon.
may be substituted the closing line.

The application of these remarks to
the theory of the composition and reso-
lution of forces is evident. On this
point M. Francais briefly says, ¢“This
theory which has always involved some
difficulties is.thus reduced to a problem
of the Geometry of Position.”

TraEOREM III. —-'I‘he sign of posiuon la may

also be written 1 9" that.ls to say la=1 2"

Demonstratios. —If the unit circle be dwxded
into m equal parts and the radii be drawn, they
will form a progression whose extremes are

1 2
unity. Hence 12»=1m, lixr=1m,
m m
n .

12nx =1™. Let then 2ﬂt.—_-a; we shall have

o m

m
a
% and consequently 1,=1% .

[ ]

Cor. 1.—It follows from this theorem: 1°,
that the above radii denote the m mth roots of
upity; 2°, these roots are all equal, differing
only in their positions; 3°, they are all equally
real, being represented by lines given both in
magnitude and position.
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Gor. 2.—Comparing the last .two theorems
we obtain at once the well-known values.of
these roots, which mey be expressed, in-.gen-.
eral, by )

n o 2amy"y
m % ! 2nm Anw

1 =e =cos—m—+ sin — - - V-1

He then proposes the substitution, for
+, —and £+ —1, of 1,, 1., 1-n,

connection with the general sign 11.,'
an additional advantage over that- al-
ready suggested being that + and —

will indicate addition and subtraction
only, and so have but one meaning. '

THEOREM IV.—All the roots of an equation
of any degree are real and may be represented
by lines given in magnitude and position.

Demonstration.—1t has been .shown that
every equation of any degree whatever.is al-
ways decomposable into real factors of the
first or second degree, and hence it is sufficient
to show that the root of an.equation of the
second degree can Dbe represented by lines
given in magnitude and position. Now the
roots of an equation of the second degree, be-
ing of the form z=p+ ¥g, can at once be con-
structed by the foregoing rules; for, 1°, if ¢
is positive,  will be the sum or diﬂerence of
two positive or negative quantities, laid off on
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the axis ; 2°, if ¢ is negative, 2 will be a right
line drawn from the origin, the co-ordinates of
whose extremity are p and ¥g.

M. Francais concluded his communi-
cation as follows:

Such is a very brief sketch of the new prin-
ciples on which it seems to me desirable and
necessary to found the geometry of position,
and which I submit to the judgment of geom-
eters. Being in direct conflict with the com-
monly received ideas concerning so-called im-
aginary quantities, I expect they will encoun-
ter many objections ; but I dare to think that
their thorough examination will.show them to
be well founded, and that the consequences I
have drawn from them, strange as at first sight
they may seem, will nevertheless be found in
harmony with the most rigorous logic. I
ought, moreover, to acknowledge that the
germ of these ideas is not my own. I found
it in a letter to my late brother from M. Legen-
dre, in which this great geometer gave (as
something he himself had derived from
another, and purely as a matter of curiosity)
the substance of my definiions of proportion
and ratio—theorem I. and cor. 8 of theorem
11.; but the latter was a mere suggestion, and
only justified by a few applications. To myself,
therefore, belongs only the credit due to the
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manner in whi¢h these ‘principles have been
set forth, and their proof, the netation, and the
proposal of the symbol't+a. ' T hopt that the
publicity thus given to my own results may
induce the resl suthor of’ thesé conceéptions to
make himself known and to ptiblish'his own
researches on this subject,

In the sime vblume (IV. p '71-78) of
the annales’ whlch _contained th]rs paper
from M. Fral}cals, a note was insgrted
by the editor, Gergpnne, to .the effect
that two years before :(1811) .in & letter
he “had written to M. -de Mniziére on a
communication which the latter had con-
tributed to the ﬁrst volume, he had sug-
gested that numenca.l quantmes were
perhaps improperly classified in a single
sertes, and that, from their.very nature,
it seemed asif ’ thity should be arranged
in a table’ of dohble ax’gument as fol-
lows:
=242/ 71, —=1424/—1,
+2x/:T,+15+ 2V =1, +24 20/ —1,...
. 7'_2 + V:I,—l'i'_'\/:-r—l,—*- 1'/'—:2

+144/—1, +24+4/—1,...
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ceer=3 =1, 0, +1, +2, ...
e y=2=A/ 1, = 1=/ Z1,—4 2,
+1—-vVZ11, +2—-4/1,...
oy =220/, —1-24/=1,~2¢/ "1,
+1—2¢/—1, +2-2/1, ...

So that, like Francais, he proposed that
quantities of the form »n 4/ —1 should be
laid off in a direction perpendicular to
that in which the quantity » was meas-
ured, and that quantities having other
directions should be represented by the
sum of their projections on these two.
He cites also from a letter of M. de Mai-
ziére the following: ¢ What I have ad-
vanced on imaginary quantities is quite
novel, . . . .. and I am sure you have
already recognized its exactness,” and
again : “This will cease to be a paradox
when I have proved that imaginaries of
the second degree, and therefore of all
degrees, are no more Enaginary than
negative quantities or imaginaries of the
first degree, and that as regards the
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former we are exactly in the same posi-
tion as were the Algebraists of the sev-
enteenth century with respect to the
latter.” M. Gergonne di..laims any
intention of depriving either Argand or
Francais of the credit due them, but
simply called attention to the fact that,
after all, these conceptions were not so
strange as would seem, since several had
entertained them, and in closing he re-
marks that M. Francais’ paper may be
summarized in the following proposi-
tion:

“When, we seek a determinate but
unknown length which is supposed to
liein a certain direction along a given '
line from a given point, while it really
lies in the opposite direction, we obtain
a negative expression ; and if this length
is not on the line at all, the expression
will appear under an imaginary form.”

M. Francais' paper called forth a
second article from M. Argand, which
appeared in Vol. IV., p. 133-147 of the
Annasles, wherein he called attention to
his previous publication, and claims to
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have been the person to whom Legendre
referred in his letter, he having submit-
ted his first treatise to Liegendre’s exam-
ination. This second paper is, in the
main, a restatement of the views ad-
vanced in thefirst ; butin itheabandoned
the use of the signs~and ~-, and returned
to that of + A/— 1. He also added
some further remarks, which are inter-
esting as showing how he attempted to
extend his theory to tri-dimensional
space, and of which the following is a
translation:

Let (Fig. 28) KA=+41, KC=-1, KB=+
¥—1, KD=—4=1; any other radius KN,
in the same plane, will be of the form p4-¢ ' —1;
and, conversely, every expression of this form
will denote a directed line of this plane.

Draw now from the center K a perpendicu-
lar KP=KA to the plane. How shall this
directed line be designated? Is it wholly in-
dependent of KA and KB, or can it be referred
analytically to the prime unit KA, as are KB,
KC? Guided by analogy it would seem that,
taking the entire circumference as the unit
angle, a directed radius making an angle a
with KA would be expressed, from the princi-
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ples already laid down, by 1*; but this expres-
sion would be troublesome when « is a fraction,
because it would then have .more .than one
value. This objection would be met by the
adoption of M. Fraucais’ notation, 1.; we
should thus have KA=1,, KB=1;, KC=1;,
KD=1;. We have considered angles reckoned

Fig.23

/

Q

from A above and below as positive and nega-
tive. Now, if we apply to the angles the rule
we have adopted for lines, we should be led to
regard imaginary angles as laid off 1n a direc-
tion perpendicular to that which corresponds
to real angles. Suppose the semi-circumfer-
ence ABC to revolve about AC, the point B
describing the circle BPDQ; since we already
have . L e
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angle AKB-—H-} +n, - -

’ angle LKD::—Q—‘} (—1),
we may write Angle ARP =3¢ —1=41;;
whence we conclude that ~ ~ .

K,P:,I* 1*=1* m;l*i’—l:
Y= =(y-1)¥-1.

This would seem to be thé analytical expres-
sion required.

If on the circle BPD we take the point M, so
that BKM=g, we shall have, in like manner,
angle AKM=}(cos u+ ¥ =1 sin ), and writing
for brevity cos u+ ¥—1 sinpg=p, KM =13 =
Lip=(1hyp =(¥Z1)e08 e+ Y=Tsin & i)l be the
general expression for all radii perpendicular
to the primitive radius KA.

Let us now seek an expression for BKP.
On the circumference ABC, the angles esti-
mated from B in either direction are positive
and negative, and real, and the plane BKP is
perpendicular to their direction; it would thus
seem that the angle BKP, like AKP, =}V —1,
and that this should in like manner be true for
any angle NKP, N being on the circumference
ABCD; but that this conclusion is erroneous is
evident from the fact that when N and C coin
cide, we should have CKP=} ¥—1, whereas
this angle is evidently —AKP=~3+—-1. To
avpid this difficulty, observe that having
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adopted a direction for <41, there are an infin-
ity of lines perpendicular to it, among which
one is arbitrarily chosen as that of .#/—1. . The
general expression for every unity taken i in one
of these directions is, as we have just seen,

Lip=13=( ¥ TP =( ¥ =T k+¥—Taink,

Conceive at the point A, an infinite number
‘of directions perpendicular to the circumfer-
ence at that point; one of these will be that of
KP; namely that one we have taken to con-
struct the positive imaginary angles 4o 4 —1;
that is, for this case we have taken p=1=KA.
8o, at C, the direction parallel to KXP gave
negative imaginary angles —a ¥'—1; that is,
we have made p=—1=KB. Hence, with re-
spect to the direction from B parallel to KP,
analogy would lead us to make p= ¥ —1=KB.

_ Thusthe expression for BKP will be }( ¥-1)¥~1.

We will not further enlarge on these sugges-
tions, and observe only in closing that the
expressions 4, ap, ap,, which designate lines
considered in reference to one, two and three
dimensions, are only the first terms of a series
which can be indefinitely extended.

If the above ideas are admissable, the ques-
tion 80 often raised, as to whether every fune-
tion can be reduced to the form p—{-qV -
would be answered in the negative; and KP-
(¥=1)¥-1) would effer the simplest example
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of a quantity irreducible to this form, and as
_ heterogeneous, with respect to ¥'—1 as is the
- latter. with respect to 1.

It is true there are demonstrations going to
show that the form (a+b ¥ —1yn+n¥=1 can
always be reduced to the form p4-¢ ¥—1; but
we may be permitted to remark that those
which make use of series are not conclusive so
.long as it is not proved that p and ¢ are finite.
Indeed it often happens in analysis that a
.series, which, from its very nature can only be
true for real quantities, assumes an infinite
value, or rather form, when it is made to rep-
resent an imaginary quantity; and in like man-
ner it i8 presumable that a series composed of
terms of the form p+¢ ¥'—1 or ap can become
infinite if it is to express a quantity of the
‘order ap,. As for those demonstrations which
employ logarithms, they also seem somewhat
obscure, because we have as yet no definite *
conceptions of imaginary logarithme. It is
also necessary to ascertain whether the same
logarithm may not belong at the same time to
several quantities of different orders; a,ap, 4, -
Moreover the several values resulting from the
radicals of the proposed expression is another
source of ambiguity, so that one may succeed
in rigorously reducing (b4 —1)m+n4¥=1 1o
the form p-¢4 —1 without its being neces-
sarily true that this expression has no other
values of the order ap, irreducible to this form.
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Before this second paper of Argand's
had come to the notice of Francais, the
latter also had endeavored to extend the
new theory of imaginaries to tri-dimen-
sional space. In the fourth Vol. of Ger-
gonne’'s Annales a letter appeared from
Franeais, from which the following is an
extract:

Actcording to my previous definition, positive
and negative angles are taken in the same
plane, which for brevity I shall designate as
the plane zy. It would then seem natural to
suppose that imaginary angles are situated in
planes perpendicular to zy, and this supposi-
tion would be justified by analogy alone; but
its legitimacy may be shown as follows: the
angle +/5 ¥ —1 is a mean proportional, both as
to magnitude and position, between -~ J:] and
-6 it is therefore situated with respect to the
angle 4/ as is the angle — 4 with respect’ to
it, which can only be so long as the plane of
the angle + /5 ¥ —1 birects the angle of the
planes + /5 and ~ 4. Now these planes coin-
cide; therefore the plane of + 5+ —1 is perpen-
dicular to the plane xy. Conversely, since
every plane perpendicular 10 zy bisects the
angles between the planes of the positive and
negative angles, every angle 3, in such a
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plane, may be considered a mean proportional
in magnitude and position between +p and
—f3; hence its value, in respect to both magni-
tude and position, is + & ¥—1.
From the above, and my 2nd and 3d theo~
rems, it follows that 1 pv=e@V-D¥Y—I=¢—F
BY-1
=1 2 zcos(8 ¥=1)4 ¥—1sin(f ¥=7).
Lambert’s Ahyperbolic sine and cossne are thus
reduced to the theory of circular arcs, Naperian
jogarithms, and roots of unity.
It further follows that
1,.1gy—g=e¥-1,BY-DY=T=¢lt8 V-1 ¥=-T
. =lajavm
=e*" ~1{cos(f ¥ -1+ ¥—1sin (S ¥—1)]
=cosacos(f ¥ =14 ¥ —1sinecos(S +' 1)
. + V1.V sin(8 ¥Y=1).
Whence
. gv=T=acosacos( V—IH— Y-1
a sinacos(f ¥Y—1)+ ¥—1. ae* —lsm(ﬂ vY=1)
Hence the projections of @ on the three co-
ordinate axes, or rather its three components,
will be
acosacos(f ¥=1), ¥—1.asinacos(f ¥—1),
¥—1.aa sin(8 ¥ —1).
These, Monsieur, are the results I have
reached ; but I confess I am not yet satisfied

Wi
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with {them. I.desire to suppress wholly the
old imaginsry notation, as I have done for
geometry of two dimensions ; that is, for the
latter I have reduced oblique lines of the form
A4B#—1 to that of aa, where a denotes the
absolute length of the line, and a the angle it
makes with the axis of reference. In tri-di-
mensional geometry, I desire to express the
position of any line by aa, , ¢ denoting the
absolute length a the above angle and A the
angle made by the plane of ¢ with 2y ; but as
yet all my efforts in that direction have proved
unsuccessful. I trust some one more skillful
thanj myself may succeed in filling up this
gap. , At all events, I am confident that the
true method of extending our theory of imag-
inaries to tri-dimensioral geometry consists in
the consideration of imaginary angles,

P In a postscript to this letter, Francais

acknowledges the receipt of Argand’s

memoir, and that to the latter belongs

the credit of the discovery of the geo-

metrical representation of imaginaries.
He then adds:

In starting from the same principle we have
reached different results. I have said above
that I have not succeeded in reducing the ex-
pression for the position of any right line in
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space to the form g, , . The reasons for my

failure are these: I attempted to make, from
analogy -

a, =a. A Y=1_q(cosA+ ¥—1 sinA) whence

AYVTT
lap= (e‘ V_—l) e

' (cosa+ ¥—1sina)*osA+ V—TsinA
which, when e=37, A=}, gives

ey, =(¥=1) v-1,
which agrees with the result of M. Argand
But, developing the general case, we have
AV=1 ( eAYV-1)
1aA_(€uV 1)e a.e
f@cosA+ YZ{asinA) V-
‘ Z1.acosA e( Y 1a sinA) V— 1

=[cos(acos A)+ 4 -—1 sin(e cos A)] x
[cos( ¥ —1.asinA)+ ¥ —1sin( 4 ‘“l.esinA)]=
cos(acosA)cos( ¥ 1. asinA)+ V=1
sm(acoeA)cos( 4" ~T.asinA)+
TH.¢¥~1-203A gin(4"1.asinA),
an expression which, on account of its doubly
transcendental character, would seem inad-
missable. On comparing it with
1au ¥ —i=coszcos(x ¥—1)+ ¥ —1sinicos
, (¥ 1)+ ¥—1.8* Y ~lsin(u 1)
1 rejected it altogether, because the angles a
and A are easily found in terms of z and 2 by
spherical trigonometry. In fact we have
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cos i cos(u ¥ —1)=cos g,
sinA cos(u ¥—1)=sin 2z cos(A ¥—1),
sin(z ¥ —1)=sinasin(A ¥ —1);
whence
coshe —— cosa
Y1 sln'a 18in?(A ¥/—1) 1)
ginA=___sinacos(A v=1)

V1—sin*asin®(A V=1

And therefore
lap=[cosa+ ¥—1sinacos(A ¥—1)]x

{1+ sinasin(AV:I)_V:.l%.
¥1-sin®asin®(A ¥-1)

From this it seems to me clear that as cannot
be determined as @. was,and that the supposed
analogy between angles and lines does not exist.

You must have remarked, Monsieur, that
M. Argand, does not prove my proposition
@e=alcosa+ ¥ —1sin a), and that this funda-
mental equality is, with him, simply a suppo-
sition justified only by a few examples.

On this .remark M. Gergonne very
justly observes that no demonstration
was needed, inasmuch as Argand had
defined the sum of directed lines as a
certain composition of motions, “a very
natural extension of the ordinary defini-
tion of Algebra.”
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M. Francais concludes:

1 do not quite see why M. Argand (No. 12),
in writing 27=1, should introduce a new unit,
rendering, it seems to me, the rest of his paper
obscure. Finally, I should be loth to admit -
the correctness of his assertion that

. (¢ “’_l)dV:l_ o
is irreducible to the form A+B+¥—-1. In
fact, we have :

OV——-].zebg(cV:—lzelogi_loxv-—j :

—glogetinY=1= gloge (ir V=1,
therefore,

(e ¥=1)f Y=1_ (dlog) V—1,—idn _ ,—idn

[cos(dlog ¢)+ ¥—1 sin(dloge)],
which is certainly of the form A+ B y—1. I,
therefore, think myself correct in regarding
the expression (¢ ¥—1)?¥~1, which he assigns
to the third dimension, as simply a conjecture
open to serious objection.
On Nov. 13th, 1813, M. Servois ad-
_dressed a letter to Gergonne, which is
especially interesting as bearing upon
the extension of Argand’s theory to space
of three dimensions. He objected first
to Francais’ proof of his first theorem.
This proposition, that +a+/—1 is a mean
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proportional in magnitude and position
between + @ and—a, he claimed to con-
gist of two, one of which, viz: that
+a+/—1, was a mean proportional as to
position is not evident, and is indeed
precisely what is to be proved. To this
criticism Gergonnereplied that,although
Servois thinks it evident that + a4/ —1 is
8 mean as regards magnitude, between
+ @ and —a, it seemed to him difficult
to see how such an expression, which,
withits signs, is anegation of magnitude,
could be a mean between two reals ; that
as regards magnitude, the mean could
only be a ; but, taking position into ac-
count, the mean must also be conceived
under this new aspect, and is for this
very reason a mean in position as well as
magnitude, so that the interpretation of
+ a4/ —1 is reduced to the selection of a
line which is situated with reference to
+ a a8 — a is to it.

Servois objected, secondly, that the
new theory was not only founded merely
on analogy, but was not even justified a
posteriori by its applications. Empha-
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sizing Argand’s remark that it consisted
in the use of a special notation, he char-
acterizedit as ‘asort of geometric mask,
superadded to analytic forms whose
direct use was more simple and expedi-
tious.” For example, he says :

take Argand’s first application,
where he proposes to develope sin (¢ 4 ) and
cos (@+05). From the general formula e2V-1

=cosa+ ¥—1sin e, I obtain 6@+ ¥-1 —:-
cos (a+5)+ ¥ —1sin (a+3), and thence @+ *-1
=Y-1 Y=1_(cos a+ ¥~1 sin a) (cos b+

¥—1 sinb), or ¢ @ ~1= (cos a cos b-sin a sin
b))+ ¥—1 (sin a cos b+ cos a sin b); equating
these two values of ¢@Y=1 and subse-
quently the real and imaginary parts separate-
ly, we have cos (a+b)=cos a cos b—sin a sin b,
sin (@a+b)=sin @ cos b + cos a sin 4. All the
other geometrical applications are easily made
in the same manner. They may be found in
various works, and especially in ‘“ A Purely
Algebraic Theory of Imaginary Quantities,”
by M. Suremain-de-Missery (Paris, 1801). The
single application to algebra (close of Argand's
treatise) seems to me quite unsatisfactory. I
do not think it sufficient to find values for z
which render the polynomial of less and less
value; it is necessary, besides this, that the law
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of decrease should necessarily render it zero ;
and that it should be such that zero is not, so
to speak, the asymptote of the polynomial.

After citing Euler’s proof that

(WD) Yl = i,
in reply to Argand's assertion that this
expression was irreducible to the form
r+gVv —1, he raises two other objections,
which are important and given in full.

Accustomed to designate the position of a
point in a plane by an angle and radius vector,
geometers have certainly not been ignorant of
the consequences of M. Francais’ definition.

But, content with distinguishing
between the magnitude and position of a right
line in a plane, they had not yet formed, from
these two simple ideas, a single complex one,
or rather they had not yet created a new etre
geometrique, uniting at once both the ideas of
magnitude and position. The length of a
right line and its position, z. e. the angle it
makes with a fixed axis, are two quantities,
which we may term homogeneous ; now, how
can they be so combined as to form this new
entity called a directed line ? It seems to me

- this problem is not yet satisfactorily solved.
If « is the length of the line and a the arc of
the unit circle which measures the angle it
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makes with a fixed axis, undoubtedly we may
in general represent the line by ¢ (¢, o), and
the function ¢ must be determined by the
essential condition it is to satisfy. Thus 1°,
evidently ¢(¢,e)=+a must correspond to a=o,
e=2m, .. .., a=2nn, and ¥a,e)=—a 0 a=m,
a=3m, .. .., a=@n+1)r; 2°, also, evidently
from ¢(a,a)=¢(b, ) we must have a=b, a=p0.
But 3°, does it follow from the proportion
#a,0) _$(e)
96.0) ¢ (@9

a [
must have 5 = and a—f=y—6? I do not

as M. Francais says, that we

see that this necessarily follows from the con-
ception of ¢, The very meaning of this ratio
:((: ;3 is quite obscure. What indeed is meant
by doubling, trebling, etc, a directed line ?
A prior: this is not intelligible. M. Fran-
cais seems to have been aware of this
difficulty, inasmuch as he speaks of the swm
of directed lines only as a consequence of his
first two theorems. Still, I do not object to
admitting this condition as an essential charac-
teristic of ¢ ; but in that case the complete
definition of adirected line will be a deflnition
nominis non ret, or, in other words, directed line
will be the name of a certain analytic function
of the length and direction of a right line.
From this it unfortunately follows that we
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are no longer constructing imaginaries, but
simply reducing them to the same analytic form.
However, let us see what this function is. 1t
is, in the first place, clear that the expression
#(a,a)=a.ea ¥ 1 satisfies the three foregoing con

ditions. In fact, we have 1°¢(a,0)=a.e0¥—1=aq,
#a,7)=a.6" V‘—1=a(cos m+ ¥ —1ginm)=—a; 2
the equation ¢(a,a)=¢(b, ) becomes a.¢* v-1_
b.¢8Y—1, or, passing to logarithms, equating,
and returning to numbers, a=>5, a=/; 3° the
above proportion, by similar transformations
becomes ‘Z-:é and a—f=y—d. But is this
form a.e=¥—1the only one which satisfies these
three conditions? I think not, and it seems to
me evident that they will be equally true if we
substitute an arbitrary coefficient for the imagi-
nary ¥—1. Sothatthe forma.ez¥—1will, in my
opinion, only be a special case of the analytic
expression for a directed line, in its conven-
tional signification. Are there any other con-
ditions which follow from this signification ?
To thissquestion no answer is made, nor do I
either sec any.

Again, 4° the table of double argument which
you (Gergonne) propose, as applied to a plane
supposed to be so divided into points or ¢nfins-
testmal squares that each square corresponds to
a number which would be its indez, would very
properly indicate the length and position of
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the radii vectores which revolve about the
point or central square corresponding to +0;
and it is quite remarkable that if we designate
thelength of a radius vector by @, and the angle
it makes with the real line ..., —1, +0,+1,....
by e, the rectangular co-ordinates of -its ex-
trematy remote from the origin by @, y, the real
line being the axis of 2, the point would be
determined by z+y ¥ —1, and consequently,
since z = acosae, y=asin bya, a.ea¥=1, Thus
we have a new geometrical interpretation of
the function a.ea¥—1 which, it seems to
me, is of more value than that of MM.
Argand and Francais; but certainly we
should not thereby conclude that this
was a new method of constructing, geo-
metrically, imaginary quantities, for the above
indices presuppose them. However this may
be, it is clear that your ingenious fabular ar-
rangement of numerical magnitudes may be
regarded as ‘a central slice (tranche centrale) of
a table of triple argument representing points
and lines in tri-dimensional space. You would
doubtless giveto each term a tri-nomial form;
but what would be the co-efficient of the third
term? For my partIcannottell. Analogy would
seem to indicate that the tri-nominal should
be of the form pcosa+gcosB+rcosy, a, S
and y being the angles made by a right line
with three rectangular axes, and that we should
have ( » cos a+¢ cos 3+7cos ¥) (p’cos a+¢'cosB
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~+7/cosy)=cos?a+cos*3+cos?y=1. The values
of p,q,7, p',¢’, satisfying this condition would
be absurd; but would they be imaginaries, re-
ducible to the general form A+B ¥ —1?

On this letter Hamilton remarks in
his Zectures on Quaternions, (Preface,
p- 57), “The six non-rexls which thus
Servois with remarkable sagacity fore-
saw, without being able to determine
them, may now be identified with the
then unknown symbols+14, +j, +%, —¢,
—7,,— k of the quaternion theory ;" and it
may here be interesting to quote (North
British Review, 1866), from a letter of
Hamilton on the discovery of these sym-
bols :

Ocr. 15, '58.

«P. S.—To-morrow will be the fif-
teenth birthday of the Quaternions.
They started into life, or light, full
grown, on the 16th of Oct., 1843, as
I was walking with Lady Hamilton to
Dublin, and came up to Brougham
Bridge, which my boys have since called
the Quaternion Bridge. That is to say,
Ithen and there felt the galvanic circuit



116

of thought to close ; and the sparks
which fell from it were the fundamental
equations between i, j, k; exactly such as
I have used them ever since. I pulled
out, on the spot, a pocketbook, which
still exists, and made an entry, on which,
at the very moment, I felt that it might
be worth my while to expend the labor
of at least ten (or it might be fifteen)
years to come. But then, it is fair to
say that this was because I felt a problem
to have been at that moment solved—an
intellectual want relieved—which had
haunted me for at least fifteen years be-
fore. Less than an hour elapsed before

. I had asked and obtained leave of the

Council of the Royal Irish Academy, of
which society I was at that time presi-
dent, to read, at the next general meet-
ing, a paper on Quaternions, which I
accordingly did on Nov. 13th, 1843.”

It is also proper here to add a dis-
claimer from Gergonne as to any thought
of the extension of his table to tri-
dimensional space, until after the ap-
pearance of Argand’s and Francais'
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papers ; ;and that even then he saw no
way by which to effect that result.

The above letter from M. Servois called
forth a reply from Francais (Annales,
Vol. IV., p. 364-367), and a third paper
from Argand (Annales, Vol. V., p 197-
209). In the former, Francais sustains
Gergonne, who had already said that
Servois asked toomuch of thenew theory,
demanding rigorous demonstrations of
that which, as in the early history of
negative quantities or the calculus, was
perceived by a sort of instinct, the proofs
of whose fundamental principles the
earlier writers were not in a state to
produce. He then adds a few examples
of the facility with which one might pass
from the proposed to the ordinary nota-
. tion.

The equation of a triangle whose base coin-
cides with the axis of reference is as+d—p=c¢,
whence

acos a+4-bcos f=c¢, and asin a—b sin =0,
or, taking the sum and difference of the squares
at+b®+-2ab cos(a+0)=c®,

a?cosa+b2cos’3+2ab cos(a— B)=c?.
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The equation of the circle referred to the
center is ag=2z+y ¥'—1, whence
acos¢=z, asinp=y, z*+y*=al.
The equation of a circle referred to a diame-
ter is p¢+ oir—¢=2a, whence
p CcO8 ¢+ 5 8in ¢=2a, p sin ¢ — ¢ cos ¢=o,
p2=2ap cos ¢, 2*+y*=2ac.
The equation of an ellipse referred to the
focus is pp+(2a—p) =26, whence

p cos ¢+(2a—p)cos W=2e,
p sin ¢+(2a—p)sin Y=o, p=

at—e?
a—ecos ¢

The reply of Argand is appended.

The new theory of imaginaries, already re-
ferred to several times in this publication, has
two distinct and independent objects; it seeks,
first, to render intelligible certain expressions
whose presence in analysis has been inevitable,
but which have not yet been referred to any
known evaluable quantity ; and, second, it
presents a method, or a particular notation -
which employs geometric symbols concurrent-
ly with the ordinary algebraic signs. Hence,
from this double point of view, two questions
arise: Has it been rigorously shown that
¥ ~1 represents a line perpendicular to those
denoted by 41 and —1? Can the notation of
directed lines furnish, in certain cases, demon-
strations and solutions preferable either for
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their simplicity or brevity, etc., to those which
they are intended to replace?

The first of these will, perhaps, always be
open to discussion so long as we seek to estab-
lish the meaning of 4¥—1 by analogy, from
the commonly received ideas on positive and
negative quantities and their ratios. Negative
quantities have been and are still the subject
of discussion; it will, therefore, be all the
easier to raise objections to the new theory of
imaginaries. But this dificulty will vanish
if, with M. Francais, we define what is meant
by a ratio of magnitude and position between
two lines. Indeed, the relation between two.
such lines may be conceived of with all neces-
sary precision. Whether this relation be called
ratio or something else, it may always be
made the subject of exact reasoning, and its
consequences, in analysis and geometry, of
which M. Francais and myself have given
some examples, may be traced. The only re-
maining question, then, is whetherit is proper
to designate this relation as a ratio or propor-
tion, words which already possess, in analysis,
a determinate and fixed meaning. Now, this
is permissible, because the new meaning is an
exlension, not a contradiction, of the old one.
The latter is so generalized that the ordinary
meaning becomes, so to speak, a particular
_ case of the new one. There is then, no ques-

tion here of demonstration.
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Thus, for the analyst who first 'wrote
a—'t:a—l”-, this equation was a definition of

negative exponents, not a proposition proved
or to be proved. All that it was incumbent
upon him to show was that this definition was
only a generalization of that of positive ex-
ponents, the only ones before known, and
8o for fractional, irrational and imaginary ex-
ponents. It has been said that Euler proved
(¥=1)¥=1=¢-Y%r. The word prored may be
exact if we mean that this equation is
derived from ex¥ —1—=cosz+ ¥ — lsinz,
which is readily shown to be the case; but it is
not 8o as regards this latter; for to show that a
certain expression has a definite value, implies
the previous definition of the expression. But
is there any deflnition of imaginary exponents
antedating the so called demonstration of
Euler? It seemsnot. When Euler svught to
evaluate ez¥—1, he naturally resorted to the
Pid
12
demonstrated for all 7eal values of 2. By mak-
ing 2=z ¥ —1 he found
2¥V—1 o

6"/:—1=I+—T‘"—1—2— e

Thence he concluded, not that ez ¥—1=cosz+
A/—1sinz, but that, if the expression ez¥—1
was defined as representing a quantity equal to

theoremeZ:1+.lf+ + . . . . previously
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cosz+ ¥—1sinz, we should thereby bring both
real and imaginary exponents under the same
law. Here again, then, we have the extension
of a principle, not the demonstration of a
theorem.

It is also by an extension of principles that
I was led to regard (¥ —1)(Y—Das representing
aperpendicular to theplane +1, + ¥—1. The
two results conflict, and I certainly have not
insisted upon my own; I only wish to observe
that MM. Francais and Servois have attacked
it from considerations which are after all of
the very nature of those on which I relied ‘o
establish it.

But if the above perpendicular cannot be
expressed by (¥—1)¥—1, how then shall it be
represented? Or, rather, can any expression
be found, whose adoption, as the representa-
tive of the perpendicular, shall bring all di-
rected lines whatever under a common law,
as is already the case for every line of the
plane +1, + ¥—1? This is a question which
must be of interest to gcometers, at least to
those who admit the new theory. To return
to the original question, I observe that whether
¥ —1 does or does not represent the perpen-
dicular on +1 must depend upon the meaning
of the word ratio; for it is agreed by all that
+1: ¥V -1:: ¥=T:—-1or that%=v—ji.
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So that M. Servois’ objection to Francais’
proof of his first theorem, viz: ‘‘That it is
not proved that +a ¥'—1 is a mean, as to posi-
tion, between 4-a and —a” is equivalent to the
assertion that the word ratio has no reference
to position. In its usual acceptation, this is
true; and on the other hand, it may be said
that, in the conception of a ratio between
quantities with different signs, the signs must
be regarded. In the new meaning, direction
and magnitude make up the idea of ratio. It
is thus seen to be a question of werds, decided
by the exact definition given by Francais,
which is an extension of the usual one.

The second point under discussion is more
important. Doubtless no truth is reached by
the notation of directed lines which cannot be
attained by ordinary methods; but which
method is the simplest? This question is, I
think, worthy of examination. It is to the
influence of methods and notations on the
progress of the science, that modern mathe-
matics owes its superiority. So that when
anything new of this kind appears, we may
at least examine it in this respect. Since the
publication of the new theory, M. Servois
alone has expressed an opinion on this point,
and his opinion is not favorable to the new
notation, Analytic formule seem to him more
simple and expeditious. I would, however,



123

claim formy method a more careful examina-
tion. I adiit that it is novel, and that the
mental operations it requires, although quite
simple, demand some familiarity in order that
they may be performed with the ease which
follows practice in the ordinary operations of
Algebra. Some of the theorems I have proved
seem to me easier than the corresponding
purelyanalytic processes. This is, perhaps, an
author’s illusion, and I will not insist upon it:
but I claim with more confidence the superi-
ority of the method of directed lines for the
demonstration of the Algebraic Theorem:
¢ Every polynomial zn+aan—1+

is decomposable into factors of the ﬂrst or
second degree.” I feel it necessary to resume
this demonstration, not only to reply to the
objections of M. Servois, but also to show
more fully how easily it is derived from the
new principles. The importance and difficulty
of this theorem, which has tasked the skill of
the best geometers will, 1 think, excuse, in
the eyes of the reader, some repetition. The
demonstrations previously given may, I be-
lieve, be classified under two heads: Those
of thefirst-class depend on certain metaphy-
sical principles relating to the transforma-
tion of functions, which are doubtless true in
themselves, but which, properly speaking, are
not susceptible of rigorous proof. They are
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a sort of azioms whose truth cannot be appre-
ciated unless we already grasp the spirit of
Algebraic analysis ; whereas to admit the truth
of a theorem, it is sufficient to know the prin-
ciples of this analysis; that is, to understand
its definitions and language. Hence demon-
strations of this kind have been frequently at-
tacked. The Receudl, in which these remarks
appear, offers several examples, and the ap-
pearance of such discussions is an indication-
of the fact that such reasoning is not above
reproach.

In other cases the proposition to be estab-
lished is approached directly, by showing that
there is always at least one quantity of the
form a}b¥~1, which, when substituted for
@, renders the polynomial zero ; that is to say
that this polynomial may always be resolved
into factors of the first or second degree. This
is the method of Lagrange. This great geom-
eter has shown that the previous methods of
d’Alembert, Euler, Foncenex, etc., are inade-
quate (Résolution des equations numériques.
Notes IX. and X). Some of them resorted to
series, others to auxiliary equations; but they
did not prove, as they should have done, that
the co-efficients of these series and equations
were always real. These geometers admit im-
plicitly  the principle that if a problem
involving an unknown quantity can be re-
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solved in n ways, it must lead to an equation
of the nth degree.” Lagrange himself regards
this legitimate, although he does not use it in
the above-cited demonstrations. Now, may

.it not be said that this principle, probably true
as it is, is not demonstrated, and belongs to
that class of axioms above referred to? Es-
pecially would it seem as if this principle,
which in theory is among the first to be dem-
onstrated, was out of place, dependent as it
is upon no little familiarity with the practice
of the science. This remark is not a mere
quibble, which, as regards conceptions de-
serving the respect of all geometers, would be
as out of place as it is useless, but is made sim-
ply to show the difficulty in the way of a satis-
tory treatment of this subject.

It would appear from the above that a de-
monstration at once simple, direct and rigor-
ous is worthy the attention of geometers. I
shall, therefore, resume that of my previous
paper; but, to avoid all ambiguity, shall free
it from any consideration of vanishing quan-
tities. It will be convenient to restate briefly
the first principles of the theory of directed
lines.

Having taken KA as the direction of positive
quantities, the opposite direction AK, will be,
as usual, that of negative quantities. Drawing
the perpendicular BKD through K, one of the
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directions KB, KD, the former say, will corre-
spond to imaginaries of the form +a ¥ —1, the
latter to those of the form —a ¥—1. The line
drawn above the letters indicates that direction
is considered, and, when we are only concerned
with length, is suppressed. Assuming arbi-
trarily the points F ,G, H, . . . ., P, Q, we
have FG+GH+ . . . +PQ=FQ. This is the
law of addition. If, between four lines, tliere

et tho relation ABZEE o i aaditi
exists t grelatlon cb—gm &rd, in addition,

the angle between AB, CD is equal to that
between EF, GH, these lines are said to be én
proportion. Hence the law of multiplication;
for a product is merely a fourth term in a pro-
portion whose first term is unity.

It is to be observed that these two rules are
independent of any opinion one may have on
the new theory. If it is desirable that ¥ —1,
a symbol to which the practice of Algebra
continually gives rise, and which, sometimes
called absurd, has yet never given absurd re-
sults, if it is desirableI repeat that this symbol
should remain meaningless, while still not be-
ing zero, this will give rise to no difficulty.
Directed lines will only be the symbols of num-
bers of the form a +b ¥—1. - The above
rules will be none the less true, but in-
stead of deducing them & priors from
purely metaphysical considerations, the
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first will depend on a simple construction.
The second will be an immediate consequence
of the formul® sin (a+-b)=sina cos b+ ... :
and therefore the use of these rules may give
demonstrations entirely satisfactory.

Directed lines will then be symbols of the
numbers -5 ¥—1. Like them they are sus-
ceptible of 1ncrease, decrease, multiplication,
division, etc. ; they will, as it were, correspond
throughout, function for function, and, in a
word, represent them completely. Hence,
from this point of view, concrete quantities
will represent abstract numbers; but con-
versely abstract numbers cannot represent
concrete quantities. In what follows, the
accente and subscripts are used to indicate the
absolute magnitude of the quantities to which
they are affixed; thus, if a=m-+n¥—1,
m and n being real, it is understood that
a, or a’= ¥Ym3Fn®. Let then )
yz=zrtazn—14+ban—2+ . . . . +frtg
be the proposed polynomial, = being a whole
number; ¢,6, . . . . f, g may be of the
form m+n¥—1. We are to prove that we
may always find a quantity such that, substi-
tuted for z, y,=o. The polynomial may be
constructed for any value of z by the preced-
ing rules. Taking K as the initial point, P
as the final one, KP will express this polyno-
mial, and it is to be shown that £ may be so
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determined as to cause P to coincide with K.
Now, if among all the possible values of z,
there is no one of which this is true, the line
KP cannot become null; and of all the values
of KP there will necessarily be one smaller
than the rest. Designate this minimum value
of z by 2; then y'(244)<¥'z cannot be true,
whatever the value of ¢. Now, developing,
we have

Y=Yz +

[ner—1+(n—1)azn—24 . ... +f )i+
(4) {_;j,”;_lz,.,s_,___” }i’+.---

+(nz+a)in—14n,

As the co-efficients of the several powers of
¢ may become zero, and this is a special case,
it is better to replace the above equation by

(B) y(z+iy=gz +Rir +8e2+ . . .. - Vivpin;

and so make the solution general; R, Sand V
not being zero and the exponents 7, %, . . . , o,n
being increasing. Observe that if all the coeffi-
cients of (A) were zero, the equation would
reduce t0 ¥ (z4i) = ¥z + #». Making then
t="4—yz, we shall have y@+i)=o, and the
theorem would be established for this case,
which in what follows may therefore be set
aside. 'We shall then suppose that the second
member of (B) has at least three terms. With
this premise, construct y(zt4), taking KP=y;,
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PA=Rs,AB=8s, . ..., FG=Viv, GH=i»;
we shall havey’z =KP,R%,r =PA, 8'¢,8 =AB,
, V'i,9 =FG, ¢,»=GH; for evidently,
mgeneral re=(pq.
Yioti) will be represented by the broken or

straight line
KPAB ... FGH, orby KH;

and it is to be proved that we have KH <KP.
Now the quantity ¢ may vary in two ways:
1°, In direction; and it is clear that if it

varies by an angle q, its power ¢ will vary by

an angle ra. Let then a be the angle by which

PA=Riris greater than KP=y;. If {is made
to vary by the angle I.:_a, PA will vary by the

angle 7—a; that is, the direction of PA will
become opposite to that of KP; so that the
point A will be found on the line PK, pro-
longed, if necessary, through K.
2°. The direction of ¢ being supposed fixed,
we may, in the second place, cause it to vary in
magnitude; and first, if PA>KP, we may di-
minish ¢ till PA<KP, so that A will fall be-
tweep K and P. Then, if the magnitude of ¢,
8o diminished, is not such that R’,r > 8% s +
. +V'é,» +4;%, we may, by
d1mmish1nv it still further, make this inequali-
ty true, for the exponents 8,...., o, n are
all greater than . Now this inequality is
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equivalent to PA>AB+4 . . . +FG4GH;
therefore the distance AH will be less than
PA, and, consequently, if we describe a cirele
with A as a center and radius AP, the point
H will lie within this circle, and it follows
from elementary geometry, that K being on
the prolongation of the radius PA, in the di-
rection of the center A, we shall have KH<
KP.

To follow this demonstration, I would ack
the reader to make the diagram. By the appli-
cation thereto of the above cited simple funda-
mental principles, it will be seen that, with
the exception of the development (A) which
is algebraic, the remainder of the demonstra-
tion is made, as it were, at sight, without any
mental effort.

It is almost superfluous to dwell upon an
objection which might be made to what pre-
-cedes, namely, that if one undertook to dimin-
ish the value of 2 by the method prescribed
for diminishing 'z, one might never succeed,
because the value of ¢, in the successive sub-
stitutions, might diminish by constantly de-
creasing quantities. Indeed, the contrary is
not proved ; but from this it only follows that
the above considerations cannot furnish, at
least without new developments, an approxi-
mative method, and this does not in theleast in-
validate the demonstration of the theorem.
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M. Bervais’ objection is easily answered. ‘It
seems to me,” he says, ‘‘that it is not enough
to find values of # which render the poly-
nomial constantly less ; it is necessary, in ad-
dition, that the law of diminution should
necessarily reduce the polynomial to zero, or,
if I may use the expression, such that zero is
not the asymptots of the polynomial.” It has
been proved that we may not only find for
%', constantly diminishing values, but a
value less than any assignable ome. If the
polynomial cannot be reduced to zero, its
least value will then be other tham zero, and
in this case also the demonstration holds good.
The close of M. Servois’ sentence would seem
to indicate that he makes a distinction between
an infinitely small limit and one which is abso-
lutely zero. If such was his meaning he
might be answered in the words of M. Ger-
gonne . . . . Doubtless M. Servois’ diffi-
culty arises from the equation of the hyper-

bola y= i—. It is unquestionably true that in

this equation, although we may assigntoy a
value less than any assignable one, y cannot
become zero unless 2 is supposed infinite. But
this is not the case in our demonstration; for
certainly it is not an infinite value for # which
will render the polynomial 'z zero,

Let us now resume the question which has
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given rise to the above explanations. It may
be asked if it is possible to translate what pre-
cedes into the ordinary language of analysis.
It seems to me quite probable, although it may
be difficult in this way to obtain so simple a
result. To effect this it would seem necessary
to assimilate the notation of imaginaries to
that of directed lines, writing, for instance:

a b
Yottt {1’2'TFT Ve "—1}
for a+b ¥ —1;

Ya*+4b* might be called the modulus of
a+b+¥—1, and would represent the absolute
length of the line a+54—1, while the other
factor, whose modulus is unity would denote
its direction. We should only prove 1° that
the modulus of the sum of several quantities 18 not
greater than the sum of thetr moduls, which is
equivalent to saying that the line AF is not
greater than the sum of the lines AB,BC,. . ..
EF'; 2° that the modulus of the product of several
quantities 18 equal to the product of their moduls.
The further investigation of the relations
between the notations I must leave to those
more skillful than myself. If this attempt to
obtain a purely analytic demonstration as sim-
ple as that derived from the new theory is
successful, analysis will be the gainer in thus
reaching, by an easy method, & result whose
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difficulties were not unworthy the notice of
Lagrange himself. If, on the contrary, this
attempt should prove unsuccessful, the nota-
tion of directed lines will retain an evident
advantage over the ordinary one; and in either
case the new theory will have rendered some
small service to science.

In closing, I may be permitted to make a re;
mark on a note from M. Lacroix (Annales, Vol.
IV, p. 867). Thislearned professorsays that the
Philosophical Transactions of 18068 contain a
memoir from M. Buée on the very subject of
which M. *Francais and myself have written.
Now, it was in this same year that my essay
appeared, a pamphlet in which I explained the
principles of the new theory, and of which
the paper inserted in Vol. IV of the 4nnales
(p. 188) is but an extract; it is well known,
too, that the publications of academies can
appear only after the date which they bear.
This is sufficient to prove that if the contribu-
tion of M. Buée was wholly his own, as is
quite possible, it is also quite certain that I
could have had no knowledge of his paper
when my treatise appeared.

In the foot notes to the Preface of
Hamilton’s Lectures on Quaternions, the
reader will find full references to the
labors of other writers on this subjeet,
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including Warren (1828), Peacock, Ohm,
Mourey (1828), Gauss, Buée (1806),
Gompertz (1818), Carnot, Wallis (1685),
MacCullagh, Argand, Francais, Servois,
Grassmann, DeMorgan, Graves, De-
Foncenex, Euler, etc. While giving full
eredit to the results of his predecessors
and co-workers, Hamilton justly claims
to be alone the founder of a system.
Moreover, the fundamental conception of
this system was radically different from
those entertained by previous writers.
In the latter inclined or perpendicular
lines to the plus and minus axis were
represented by imaginaries, whereas all
unit lines in space are represented by
Hamilton by distinct square roots of
negative unity, they being all real. No
one direction is assumed positive, nor is
any system of reference chosen inde-
pendent of the lines of the construction
involved in any special problem.

In addition to the works of Hamilton,
Tait and Kelland, may be especially men-
tioned the Calcolo dei Quaternioni, Bel-
lavitis, Modena, 1858, and the original
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paper (Memoirs of the Italian Society,
1854), by the same author, which has
also been translated from the Italian into
French by Laisant (Exposition de Id
Méthode des Egquipollences. Paris,
1874); the Théorie Elementaire des
Quantités Complexes, by Hoiiel, Paris,
1874 ; the Fonctions doublement périod-
tques, of MM. Briot and Bouquet, and a
treatise by Allégret, Sur le Calcul des
Quaternions de M. Hamilton. Paris,
1862.

As possessing some historic interest
may be added, in addition to the works
cited in the above-mentioned Preface,
Truel, 1786, referred to by Cauchy,
‘Woodhouse (Phil. Trans. 1801), Khun,
(Nouveaux Mémoires de Petersburg, Vol.
8), and ZLe Calcwl Directif, a series of
articles by Transom, in the Nowvelles
Annales de Mathématiques, 1868.

A. S. Harpoy.
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Sanitary and Agricultural Works.

No. 82.—CABLE MAKING FOR SUSPENSION
BRIDGES, as exemplified in the Con-
struction of the East River Bridge. By
WiLeELM HILDENBRAND, C. E. Fully
illustrated.

No. 33.—MECHANICS OF VENTILATION. By 1
GEORGE W. KAFTER, Civil Engineer.

No. 3. —FOUNDATIONS. By Pror.JULESGAUD- | |
ARrRD, C. E. Translated from the |
French, by L. F. VERNON HARCOURT, 1
M. L C. Ly

No. 85.—THE ANEROID, AND HOW TO USE

IT. Compiled by Pror. GEORGE W.
PrympTON. Illustrated.

No. 36.—MATTER AND MOTION. By J. CLERK
MAXWELL. )

No. 37.—GEOGRAPHICAL SURVEYING: Its
Uses, Methods and Results, By Frank -
DE YEAUX CARPENTER.

No. 38. —MAXIMUM STRESSES IN FRAMED
BRIDGES. By Prof. WM. CaiN. Illus-
trated.

No. 39.—A. HAND-BOOK OF THE ELECTRO-
MAGNETIC TELEGRAPH. By A. E.
Lomém, a Practical Telegrapher. Illus-
trated. !




